Skip to main content
Log in

Evolution of the Sex-lethal Gene in Insects and Origin of the Sex-Determination System in Drosophila

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Sex-lethal (Sxl) functions as the switch gene for sex-determination in Drosophila melanogaster by engaging a regulatory cascade. Thus far the origin and evolution of both the regulatory system and SXL protein’s sex-determination function have remained largely unknown. In this study, we explore systematically the Sxl homologs in a wide range of insects, including the 12 sequenced Drosophila species, medfly, blowflies, housefly, Megaselia scalaris, mosquitoes, butterfly, beetle, honeybee, ant, and aphid. We find that both the male-specific and embryo-specific exons exist in all Drosophila species. The homologous male-specific exon is also present in Scaptodrosophila lebanonensis, but it does not have in-frame stop codons, suggesting the exon’s functional divergence between Drosophila and Scaptodrosophila after acquiring it in their common ancestor. Two motifs closely related to the exons’ functions, the SXL binding site poly(U) and the transcription-activating motif TAGteam, surprisingly exhibit broader phylogenetic distributions than the exons. Some previously unknown motifs that are restricted to or more abundant in Drosophila and S. lebanonensis than in other insects are also identified. Finally, phylogenetic analysis suggests that the SXL’s novel sex-determination function in Drosophila is more likely attributed to the changes in the N- and C-termini rather than in the RNA-binding region. Thus, our results provide a clearer picture of the phylogeny of the Sxl’s cis-regulatory elements and protein sequence changes, and so lead to a better understanding of the origin of sex-determination in Drosophila and also raise some new questions regarding the evolution of Sxl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CDS:

Coding sequence

HMM:

Hidden Markov model

AA:

Amino acid

RRM:

RNA recognition motif

RBD:

RNA-binding domain

References

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  PubMed  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-208. doi:10.1093/nar/gkp335

    Google Scholar 

  • Bell LR, Maine EM, Schedl P, Cline TW (1988) Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell 55(6):1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Bopp D, Calhoun G, Horabin JI, Samuels M, Schedl P (1996) Sex-specific control of Sex-lethal is a conserved mechanism for sex determination in the genus Drosophila. Development 122(3):971–982

    CAS  PubMed  Google Scholar 

  • Cline TW, Dorsett M, Sun S, Harrison MM, Dines J, Sefton L, Megna L (2010) Evolution of the Drosophila feminizing switch gene Sex-lethal. Genetics 186(4):1321–1336. doi:10.12120210.1534/genetics.110.121202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR (2011) RBPDB: a database of RNA-binding specificities. Nucleic Acids Res 39:D301–D308. doi:10.1093/nar/gkq1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deshpande G, Calhoun G, Schedl PD (1999) The N-terminal domain of Sxl protein disrupts Sxl autoregulation in females and promotes female-specific splicing of tra in males. Development 126(13):2841–2853

    CAS  PubMed  Google Scholar 

  • Drysdale R (2008) FlyBase : a database for the Drosophila research community. Methods Mol Biol 420:45–59. doi:10.1007/978-1-59745-583-1_3

    Article  CAS  PubMed  Google Scholar 

  • Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Harrow J, Herrero J, Hubbard TJ, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle SM (2012) Ensembl 2012. Nucleic Acids Res 40:D84–D90. doi:10.1093/nar/gkr991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Handa N, Nureki O, Kurimoto K, Kim I, Sakamoto H, Shimura Y, Muto Y, Yokoyama S (1999) Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398(6728):579–585. doi:10.1038/19242

    Article  CAS  PubMed  Google Scholar 

  • Horabin JI, Schedl P (1993a) Regulated splicing of the Drosophila Sex-lethal male exon involves a blockage mechanism. Mol Cell Biol 13(3):1408–1414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horabin JI, Schedl P (1993b) Sex-lethal autoregulation requires multiple cis-acting elements upstream and downstream of the male exon and appears to depend largely on controlling the use of the male exon 5′ splice site. Mol Cell Biol 13(12):7734–7746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kandul NP, Noor MA (2009) Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3. BMC Genet 10:67. doi:10.1186/1471-2156-10-67

    Article  PubMed Central  PubMed  Google Scholar 

  • Meise M, Hilfiker-Kleiner D, Dubendorfer A, Brunner C, Nothiger R, Bopp D (1998) Sex-lethal, the master sex-determining gene in Drosophila, is not sex-specifically regulated in Musca domestica. Development 125(8):1487–1494

    CAS  PubMed  Google Scholar 

  • Miyasaka H (1999) The positive relationship between codon usage bias and translation initiation AUG context in Saccharomyces cerevisiae. Yeast 15(8):633–637. doi:10.1002/(SICI)1097-0061(19990615)15:8<633:AID-YEA407>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  • Mount SM, Burks C, Hertz G, Stormo GD, White O, Fields C (1992) Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res 20(16):4255–4262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mullon C, Pomiankowski A, Reuter M (2012) Molecular evolution of Drosophila Sex-lethal and related sex determining genes. BMC Evol Biol 12:5. doi:10.1186/1471-2148-12-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Penalva LO, Sanchez L (2003) RNA binding protein Sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol Mol Biol Rev 67(3):343–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Penalva LO, Sakamoto H, Navarro-Sabate A, Sakashita E, Granadino B, Segarra C, Sanchez L (1996) Regulation of the gene Sex-lethal: a comparative analysis of Drosophila melanogaster and Drosophila subobscura. Genetics 144(4):1653–1664

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saccone G, Peluso I, Artiaco D, Giordano E, Bopp D, Polito LC (1998) The Ceratitis capitata homologue of the Drosophila sex-determining gene Sex-lethal is structurally conserved, but not sex-specifically regulated. Development 125(8):1495–1500

    CAS  PubMed  Google Scholar 

  • Salz HK (2011) Sex determination in insects: a binary decision based on alternative splicing. Curr Opin Genet Dev 21(4):395–400. doi:10.1016/j.gde.2011.03.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salz HK, Maine EM, Keyes LN, Samuels ME, Cline TW, Schedl P (1989) The Drosophila female-specific sex-determination gene, Sex-lethal, has stage-, tissue-, and sex-specific RNAs suggesting multiple modes of regulation. Genes Dev 3(5):708–719

    Article  CAS  PubMed  Google Scholar 

  • Satija R, Bradley RK (2012) The TAGteam motif facilitates binding of 21 sequence-specific transcription factors in the Drosophila embryo. Genome Res 22(4):656–665. doi:10.1101/gr.130682.111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sievert V, Kuhn S, Paululat A, Traut W (2000) Sequence conservation and expression of the Sex-lethal homologue in the fly Megaselia scalaris. Genome 43(2):382–390

    Article  CAS  PubMed  Google Scholar 

  • Sorek R (2007) The birth of new exons: mechanisms and evolutionary consequences. RNA 13(10):1603–1608. doi:10.1261/rna.682507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE (1998) Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D 54(Pt 6 Pt 1):1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • ten Bosch JR, Benavides JA, Cline TW (2006) The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription. Development 133(10):1967–1977. doi:10.1242/dev.02373

    Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2, Unit 2.3. doi:10.1002/0471250953.bi0203s00

  • Traut W, Niimi T, Ikeo K, Sahara K (2006) Phylogeny of the sex-determining gene Sex-lethal in insects. Genome 49(3):254–262. doi:10.1139/g05-107

    Article  CAS  PubMed  Google Scholar 

  • UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75. doi:10.1093/nar/gkr981

    Article  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. doi:10.1093/bioinformatics/btp033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. doi:10.1093/molbev/msm088

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Lu H, Hong Y, Jinks TM, Estes PA, Erickson JW (2001) Interpretation of X chromosome dose at Sex-lethal requires non-E-box sites for the basic helix-loophelix proteins SISB and daughterless. Mol Cell Biol 21(5):1581–1592. doi:10.1128/MCB.21.5.1581-1592.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yanowitz JL, Deshpande G, Calhoun G, Schedl PD (1999) An N-terminal truncation uncouples the sex-transforming and dosage compensation functions of Sex-lethal. Mol Cell Biol 19(4):3018–3028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Thomas Cline for sending us the genomic sequences near the male-specific exon and Dr. Hielim Kim for comments on the early version of the manuscript. We thank Prof. Claude dePamphilis and his lab members for useful comments on our work. We thank Dr. Alfred M. Handler at the USDA-ARS for sending us the link of the medfly genomic sequence.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Klein, J. & Nei, M. Evolution of the Sex-lethal Gene in Insects and Origin of the Sex-Determination System in Drosophila . J Mol Evol 78, 50–65 (2014). https://doi.org/10.1007/s00239-013-9599-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9599-3

Keywords

Navigation