Skip to main content
Log in

The Phylogenomic Roots of Modern Biochemistry: Origins of Proteins, Cofactors and Protein Biosynthesis

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 2012

Abstract

The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

aaRS:

Aminoacyl-tRNA synthetase

CoA:

Coenzyme A

F:

Fold

FSF:

Fold superfamily

FF:

Fold family

nd:

Node distance

PCP:

Peptidyl carrier protein

r-protein:

Ribosomal protein

SCOP:

Structural classification of proteins

References

  • Ancel LW, Fontana W (2000) Plasticity, evolvability, and modularity in RNA. J Exp Zool (Mol Dev Evol) 288:242–283

    CAS  Google Scholar 

  • Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJP, Chothia C, Murzin AG (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36:D419–D425

    PubMed  CAS  Google Scholar 

  • Aravind L, de Souza RF, Iyer LM (2010) Predicted class-I aminoacyl tRNA-synthetase-like proteins in non-ribosomal peptide synthesis. Biol Direct 5:48

    PubMed  CAS  Google Scholar 

  • Artymiuk PJ, Rice DW, Poirrette AR, Willet P (1994) A tale of two synthetases. Nat Struct Biol 1:758–760

    PubMed  CAS  Google Scholar 

  • Ashkenasy G, Jagasia R, Yadav M, Ghadiri MR (2004) Design of a directed molecular network. Proc Natl Acad Sci USA 101:10872–10877

    PubMed  CAS  Google Scholar 

  • Babajide A, Farber R, Hofacker IL, Inman J, Lapedes AS, Stadler PF (2001) Exploring protein sequence space using knowledge based potentials. J Theor Biol 212:35–46

    PubMed  CAS  Google Scholar 

  • Banavar JR, Maritan A (2007) Physics of proteins. Annu Rev Biophys Biomol Struct 36:261–280

    PubMed  CAS  Google Scholar 

  • Bar-Tana J, Rose G (1968) Studies on medium-chain fatty acyl-coenzyme A synthetase. Enzyme fraction I: mechanism of reaction and allosteric properties. Biochem J 109:275–282

    PubMed  CAS  Google Scholar 

  • Bashton M, Nobeli I, Thornton JM (2008) PROCOGNATE: a cognate ligand domain mapping for enzymes. Nucleic Acids Res 36:D618–D622

    PubMed  CAS  Google Scholar 

  • Bork P, Holm L, Koonin EV, Sander C (1995) The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction. Proteins 22:259–266

    PubMed  CAS  Google Scholar 

  • Caetano-Anollés G, Caetano-Anollés D (2003) An evolutionarily structured universe of protein architecture. Genome Res 13:1563–1571

    PubMed  Google Scholar 

  • Caetano-Anollés G, Mittenthal JE (2010) Exploring the interplay of stability and function in protein evolution. Bioessays 32:655–658

    PubMed  Google Scholar 

  • Caetano-Anollés G, Kim HS, Mittenthal JE (2007) The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci USA 104:9358–9363

    PubMed  Google Scholar 

  • Caetano-Anollés G, Wang M, Caetano-Anollés D, Mittenthal JE (2009a) The origin, evolution and structure of the protein world. Biochem J 417:621–637

    PubMed  Google Scholar 

  • Caetano-Anollés G, Yafremava LS, Gee H, Caetano-Anollés D, Kim HS, Mittenthal JE (2009b) The origin and evolution of modern metabolism. Intl J Biochem Cell Biol 41:285–297

    Google Scholar 

  • Caetano-Anollés D, Kim KM, Mittenthal JE, Caetano-Anollés G (2011) Proteome evolution and metabolic origins of translation and cellular life. J Mol Evol 72:14–33

    PubMed  Google Scholar 

  • Cate JH, Yusupov MM, Yusupova GZ, Earnest TN, Noller HF (1999) X-ray crystal structures of 70S ribosome functional complexes. Science 285:2095–2104

    PubMed  CAS  Google Scholar 

  • Chan DI, Vogel HJ (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430:1–19

    PubMed  CAS  Google Scholar 

  • Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476

    PubMed  CAS  Google Scholar 

  • Chothia C (1973) Conformation of twisted β-sheets in proteins. J Mol Biol 75:295–302

    PubMed  CAS  Google Scholar 

  • Chothia C, Gough J (2009) Genomic and structural aspects of protein evolution. Biochem J 419:15–28

    PubMed  CAS  Google Scholar 

  • Cleland WW (1963) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Bophys Acta 67:104–137

    CAS  Google Scholar 

  • Cossio P, Trovato A, Pietrucci F, Seno F, Maritan A, Laio A (2010) Exploring the universe of protein structures beyond the Protein Data Bank. PLoS Comput Biol 6:e1000957

    PubMed  Google Scholar 

  • Cothia C, Lesk M (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    Google Scholar 

  • Cramer F, Englisch U, Freist W, Sternbach H (1991) Aminoacylation of tRNA as critical step in protein biosynthesis. Biochimie 73:1027–1035

    PubMed  CAS  Google Scholar 

  • Danchin A, Fang G, Noria S (2007) The extant core bacterial proteome is an archive of the origin of life. Proteomics 7:875–889

    PubMed  CAS  Google Scholar 

  • Deamer DW (1997) The first living systems: a bioenergetic perspective. Microbiol Mol Biol Rev 61:239–261

    PubMed  CAS  Google Scholar 

  • Denessiouk KA, Rantanen V-V, Johnson MJ (2001) Adenine recognition: A motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins. Proteins 44:282–291

    PubMed  CAS  Google Scholar 

  • Di Giulio M (2006) The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the last universal common ancestor (LUCA). J Theor Biol 240:343–352

    PubMed  CAS  Google Scholar 

  • Di Giulio M (2009) Formal proof that the split genes of tRNA of Nanoarchaeum equitans are an ancestral character. J Mol Evol 69:505–511

    PubMed  Google Scholar 

  • Dieckmann R, Pavela-Vrancic M, von Döhren H (2001) Synthesis of (di)adenosine polyphosphates by non-ribosomal peptide synthetases. Biochim Biophys Acta 1546:234–241

    PubMed  CAS  Google Scholar 

  • Dill KA, Ozkan SB, Shell MS, Weiki TR (2008) The protein folding problem. Annu Rev Biophys 37:289–316

    PubMed  CAS  Google Scholar 

  • Domazet-Laso T, Tautz D (2010) A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468:815–818

    Google Scholar 

  • Duax WL, Huether R, Pletnev V, Langs D, Addlagatta A, Connare S, Habegger L, Gill J (2005) Rational genomics I. Antisense open reading frames and codon bias in short oxidoreductase enzymes and the evolution of the genetic code. Proteins 61:900–906

    PubMed  CAS  Google Scholar 

  • Duax WL, Huether R, Pletnev V, Umland TC, Weeks CM (2009) Divergent evolution of a Rossmann fold and identification of its oldest surviving ancestor. Int J Bioinform Res Appl 5:280–294

    PubMed  CAS  Google Scholar 

  • Dupont CL, Butcher A, Valas RE, Bourne PE, Caetano-Anollés G (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structure. Proc Natl Acad Sci USA 107:10567–10572

    PubMed  CAS  Google Scholar 

  • Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr Opin Struct Biol 14:495–504

    PubMed  CAS  Google Scholar 

  • Dyson FJ (1982) A model for the origin of life. J Mol Evol 18:344–350

    PubMed  CAS  Google Scholar 

  • Ellington AD, Chen X, Robertson M, Syrett A (2009) Evolutionary origins and directed evolution of RNA. Intl J Biochem Cell Biol 41:254–265

    CAS  Google Scholar 

  • Engel MH, Macko SA (1997) Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 389:265–268

    PubMed  CAS  Google Scholar 

  • Engelman DM, Chen Y, Chin C-N, Curran R, Dixon AM, Dupuy AD, Lee AS, Lehnert U, Mathews EE, Reshetnyak YK, Senes A, Popot J-L (2003) Membrane protein folding: beyond the two stage model. FEBS Lett 555:122–125

    PubMed  CAS  Google Scholar 

  • Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    PubMed  CAS  Google Scholar 

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    PubMed  CAS  Google Scholar 

  • Fischer JD, Holliday GL, Thornton JM (2010) The CoFactor database: organic cofactors in enzyme catalysis. Bioinformatics 26:2496–2497

    PubMed  CAS  Google Scholar 

  • Flores SC, Gerstein MB (2007) FlexOracle: predicting flexible hinges by identification of stable domains. BMC Bioinform 8:215

    Google Scholar 

  • Flores S, Echols N, Milburn D, Hespenheide B, Keating K, Lu J, Wells S, Yu EZ, Thorpe M, Gerstein M (2006) The database of macromolecular motions: new features added at the decade mark. Nucleic Acids Res 34:D296–D301

    PubMed  CAS  Google Scholar 

  • Fontana W (2002) Modeling ‘evo-devo’ with RNA. Bioessays 24:1164–1177

    PubMed  CAS  Google Scholar 

  • Forslund K, Henricson A, Hollich V, Sonnhammer ELL (2007) Domain tree-based analysis of protein architecture evolution. Mol Biol Evol 25:254–264

    PubMed  Google Scholar 

  • Fox SW (1980) Metabolic microspheres. Naturwissenschaften 67:378–383

    PubMed  CAS  Google Scholar 

  • Francklyn CS, Minajigi A (2010) tRNA as active chemical scaffold for diverse chemical transformations. FEBS Lett 584:366–375

    PubMed  CAS  Google Scholar 

  • Garg RP, Qian XL, Alemany LB, Moran S, Parry RJ (2008) Investigations of valanimycin biosynthesis: elucidation of the role of seryl-tRNA. Proc Natl Acad Sci USA 105:6543–6547

    PubMed  CAS  Google Scholar 

  • Gaucher EA, Thomson JM, Burgan MF, Benner SA (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425:285–288

    PubMed  CAS  Google Scholar 

  • Gerstein M (1998) Patterns of protein-fold usage in eight microbial genomes: a comprehensive structural census. Proteins 33:518–534

    PubMed  CAS  Google Scholar 

  • Gerstein M, Levitt M (1997) A structural census of the current population of protein sequences. Proc Natl Acad Sci USA 94:11911–11916

    PubMed  CAS  Google Scholar 

  • Goerlich O, Foeckler R, Holler L (1982) Mechanism of synthesis of adenosine(5′)tetraphospho(5′)adenosine (AppppA) by aminoacyl-tRNA synthetases. Eur J Biochem 126:135–142

    PubMed  CAS  Google Scholar 

  • Gondry M, Sauguet L, Belin P, Thai R, Amouroux R, Tellier C, Tuphile K, Jacquet M, Braud S, Courçon M, Masson C, Dubois S, Lautru S, Lecoq A, Hishimoto S, Genet R, Pernodet J-L (2009) Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat Chem Biol 5:414–420

    PubMed  CAS  Google Scholar 

  • Gough J, Karplus K, Hughey R, Chothia C (2001) Assignment of homology to genome sequences using a library of Hidden Markov Models that represent all proteins of known structure. J Mol Biol 313:903–919

    PubMed  CAS  Google Scholar 

  • Greene LH, Lewis TE, Addou S, Cuff A, Dallman T, Dibley M, Redfern O, Pearl F, Nambudiry R, Reid A, Sillitoe I, Yeats C, Thornton JM, Orengo CA (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35:D291–D297

    PubMed  CAS  Google Scholar 

  • Gregory ST, Carr JF, Dahlberg AE (2009) A signal relay between ribosomal protein S12 and elongation factor EF-Tu during decoding of mRNA. RNA 15:208–214

    PubMed  CAS  Google Scholar 

  • Guerler A, Knapp E-W (2008) Novel protein folds and their non-sequential structural analogs. Protein Sci 17:1374–1382

    PubMed  CAS  Google Scholar 

  • Gulick AM (2009) Conformational dynamics in the acyl-CoA synthetases, adenylation domains of the non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4:811–827

    PubMed  CAS  Google Scholar 

  • Guo M, Yang X-L, Schimmel P (2010) New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev 11:668–674

    CAS  Google Scholar 

  • Haapalainen AM, Meriläinen G, Wierenga RK (2006) The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem Sci 31:64–71

    PubMed  CAS  Google Scholar 

  • Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622

    PubMed  CAS  Google Scholar 

  • Harish A, Caetano-Anollés G (2011) Ribosomal history reveals origins of modern protein synthesis. Ms. submitted

  • Hattendorf DA, Lindquist SL (2002) Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J 21:12–21

    PubMed  CAS  Google Scholar 

  • Hausmann CD, Ibba M (2008) Structural and functional mapping of the archaeal multi-aminoacyl-tRNA synthetase complex. FEBS Lett 582:2178–2182

    PubMed  CAS  Google Scholar 

  • Hausmann CD, Praetorius-Ibba M, Ibba M (2007) An aminoacyl-tRNA synthetase: elongation factor complex for substrate channeling in archaeal translation. Nucleic Acids Res 35:6094–6102

    PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    PubMed  CAS  Google Scholar 

  • Hinnerwisch J, Fenton WA, Furtak KJ, Farr GW, Horwich AL (2005) Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121:1029–1041

    PubMed  CAS  Google Scholar 

  • Hoang TX, Trovato A, Seno F, Banavar JR, Maritan A (2004) Geometry and symmetry presculpt the free-energy landscape of proteins. Proc Natl Acad Sci USA 101:7960–7964

    PubMed  CAS  Google Scholar 

  • Holland T, Veretnik S, Shindyalov I, Bourne P (2006) Partitioning protein structures into domains: Why is it so difficult? J Mol Biol 361:562–590

    PubMed  CAS  Google Scholar 

  • Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids on (Fe, Ni)S surfaces: implications for the origin of life. Science 281:670–672

    PubMed  CAS  Google Scholar 

  • Hung L-W, Wang IX, Nikaido K, Liu P-Q, Ferro-Luzzi Ames G, Kim S-H (1998) Crystal structure of a ATP-binding subunit of an ANC transporter. Nature 396:703–707

    PubMed  CAS  Google Scholar 

  • Hurley JH (1996) The sugar kinase/heat shock protein/actin superfamily. Annu Rev Biophys Biomol Struct 25:137–162

    PubMed  CAS  Google Scholar 

  • Illergård K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence—a study of structural response in protein cores. Proteins 77:499–508

    PubMed  Google Scholar 

  • Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) The evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146:11–31

    PubMed  CAS  Google Scholar 

  • Iyer LM, Abhiman S, Maxwell Burroughs A, Aravind L (2009) Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteins. Mol Biosyst 5:1636–1660

    PubMed  CAS  Google Scholar 

  • Izard T (2003) Novel adenylate binding site confers phophopantetheine adenylyltransferase interactions with coenzyme A. J Bacteriol 185:4074–4080

    PubMed  CAS  Google Scholar 

  • Jakubowski H (1997) Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases. Biochemistry 36:11077–11085

    PubMed  CAS  Google Scholar 

  • Jakubowski H (1998) Aminoacylation of coenzyme A and pantetheine by aminoacyl-tRNA synthetases: possible link between noncoded and coded peptide synthesis. Biochemistry 37:5147–5153

    PubMed  CAS  Google Scholar 

  • Jakubowski H (2000) Amino acid selectivity in the aminoacylation of coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases. J Biol Chem 275:34845–34848

    PubMed  CAS  Google Scholar 

  • Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30:409–425

    PubMed  CAS  Google Scholar 

  • Jermann TM, Opitz JG, Stackhouse J, Benner SA (1995) Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature 374:57–59

    PubMed  CAS  Google Scholar 

  • Ji HF, Kong DX, Shen L, Chen LL, Ma BG, Zhang HY (2007) Distribution patterns of small molecule ligands in the protein universe and implications for origins of life and drug discovery. Genome Biol 8:R176

    PubMed  Google Scholar 

  • Kacser H, Beeby R (1984) On the origin of enzyme species by means of natural selection. J Mol Evol 20:38–51

    PubMed  CAS  Google Scholar 

  • Kamioka S, Ajami D, Rebek J Jr (2010) Autocatalysis and organocatalysis with synthetic structures. Proc Natl Acad Sci USA 107:541–544

    PubMed  CAS  Google Scholar 

  • Kauffmann SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24

    Google Scholar 

  • Kauffmann SA (1993) The origins of order. Oxford University Press, New York

    Google Scholar 

  • Kauffmann SA (2007) Question 1: origin of life and the living state. Orig Life Evol Biosph 37:315–322

    Google Scholar 

  • Kavanagh KL, Jörnvall H, Persson B, Oppermann U (2008) The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906

    PubMed  CAS  Google Scholar 

  • Keefe AD, Szostak JW (2001) Functional proteins from a random-sequence library. Nature 410:715–718

    PubMed  CAS  Google Scholar 

  • Kim KM, Caetano-Anollés G (2010) Emergence and evolution of modern molecular functions inferred from phylogenomic analysis of ontological data. Mol Biol Evol 27:1710–1733

    PubMed  CAS  Google Scholar 

  • Kim KM, Caetano-Anollés G (2011) The proteomic complexity and rise of the primordial ancestor of diversified life. BMC Evol Biol 11:140

    PubMed  CAS  Google Scholar 

  • Kim HS, Mittenthal JE, Caetano-Anollés G (2006) MANET: tracing evolution of protein architecture in metabolic networks. BMC Bioinform 7:351

    Google Scholar 

  • Kisselev LL, Justesen J, Wolfson AD, Frolova LY (1998) Diadenosine oligophosphates (ApnA), a novel class of signaling molecules? FEBS Lett 427:157–163

    PubMed  CAS  Google Scholar 

  • Koglin A, Walsh CT (2009) Structural insights into ribosomal peptide enzymatic assembly lines. Nat Prod Rep 26:987–1000

    PubMed  CAS  Google Scholar 

  • Koglin A, Mofid MR, Löhr F, Schäfer B, Rogov VV, Blum M-M, Mittag T, Marahiel MA, Bernhard F, Dötsch V (2006) Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science 312:273–276

    PubMed  CAS  Google Scholar 

  • Kramer G, Boehringer D, Ban N, Bukau B (2010) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16:589–597

    Google Scholar 

  • Krishna SS, Grishin NV (2004) Structurally analogous proteins do exist! Structure 12:1125–1127

    PubMed  CAS  Google Scholar 

  • Kurland CG (2010) The RNA dreamtime. Bioessays 32:866–871

    PubMed  CAS  Google Scholar 

  • LaBean TH, Butt TR, Kauffman SA, Schultes EA (2011) Protein folding absent selection. Genes 2:608–626

    CAS  Google Scholar 

  • Lazcano A (2010) Which way to life? Orig Life Evol Biosph 40:161–167

    PubMed  Google Scholar 

  • Laskowski RA (2009) PDBsum new things. Nucleic Acids Res 37:D355–D359

    PubMed  CAS  Google Scholar 

  • Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR (1996) A self-replicating peptide. Nature 382:525–528

    PubMed  CAS  Google Scholar 

  • Lee SW, Cho BH, Park SG, Kim S (2004) Aminoacyl-tRNA synthetase complexes: Beyond translation. J Cell Sci 117:3725–3734

    PubMed  CAS  Google Scholar 

  • Leibniz GW (1923) Sämtliche Schrifen un Briefe, Deutsche Akademie der Wissenschaften. Akademie Verlag, Darmstadt

  • Levitt M (2009) Nature of the protein universe. Proc Natl Acad Sci USA 106:11079–11084

    PubMed  CAS  Google Scholar 

  • Lin J, Gerstein M (2000) Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res 10:808–818

    PubMed  CAS  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    PubMed  CAS  Google Scholar 

  • Ling J, Roy H, Ibba M (2007) Mechanism of tRNA-dependent editing in translational quality control. Proc Natl Acad Sci USA 104:72–77

    PubMed  CAS  Google Scholar 

  • Linton KJ, Higgins CF (2001) Structure and function of ABC transporters: the ATP switch provides flexible control. Eur J Physiol 453:555–567

    Google Scholar 

  • Lipmann F (1971) Attempts to map a process evolution of peptide biosynthesis. Science 173:875–884

    PubMed  CAS  Google Scholar 

  • Lo Surdo P, Walsh MA, Sollazzo M (2004) A novel ADP- and zinc-binding fold from function-directed in vitro evolution. Nat Struct Mol Biol 11:382–383

    PubMed  CAS  Google Scholar 

  • Locher KP (2009) Structure and mechanism of ATP-binding cassette transporters. Philos Trans R Soc B 364:239–245

    CAS  Google Scholar 

  • Lupas A, Matin J (2002) AAA proteins. Curr Opin Struct Biol 12:746–753

    PubMed  CAS  Google Scholar 

  • MacKenzie KR, Fleming KG (2007) Association energetics of membrane spanning α-helices. Curr Opin Struct Biol 18:412–419

    Google Scholar 

  • Mansy SS, Schrum JP, Krishnamurthy M, Tobe S, Treco DA, Szostak JW (2008) Replication of a genetic polymer inside of a model protocell. Nature 454:122–125

    PubMed  CAS  Google Scholar 

  • Marahiel MA (2009) Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 15:799–807

    PubMed  CAS  Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc B 362:1887–1925

    CAS  Google Scholar 

  • Martinez MA, Pezo V, Marlére P, Wain-Hobson S (1997) Exploring the functional robustness of an enzyme by in vitro evolution. EMBO J 15:1203–1210

    Google Scholar 

  • McElroy WD, DeLuca M, Travis J (1967) Molecular uniformity in biological catalyses. The enzymes concerned with firefly luciferin, amino acid, and fatty acid utilization are compared. Science 157:150–160

    PubMed  CAS  Google Scholar 

  • Milner-White EJ, Russell MJ (2008) Predicting the conformations of peptides and proteins in early evolution. A review article submitted to Biology Direct. Biol Direct 3:3

    PubMed  Google Scholar 

  • Milner-White EJ, Nissink JWM, Allen FH, Duddy WJ (2004) Recurring main-chain anion-binding motifs in short polypeptides: nests. Acta Cryst D60:1935–1942

    CAS  Google Scholar 

  • Minajigi A, Francklyn CS (2008) RNA-assisted catalysis in a protein enzyme: the 20-hydroxyl of tRNA(Thr) A76 promotes aminoacylation by threonyl-tRNA synthetase. Proc Natl Acad Sci USA 105:17748–17753

    PubMed  CAS  Google Scholar 

  • Mocibob M, Ivic N, Bilokapic S, Maier T, Luic M, Ban N, Weygand-Durasevic I (2010) Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis. Proc Natl Acad Sci USA 107:14585–14590

    PubMed  CAS  Google Scholar 

  • Morowitz HJ (1999) A theory of biochemical organization, metabolic pathways, and evolution. Complexity 4:39–53

    Google Scholar 

  • Morris CE (2002) How did cells get their size? Anat Rec 268:239–251

    PubMed  CAS  Google Scholar 

  • Murzin AG, Lesk AM, Chothia C (1994a) Principles determining the structure of β-sheet barrels in proteins. I. A theoretical analysis. J Mol Biol 236:1369–1381

    PubMed  CAS  Google Scholar 

  • Murzin AG, Lesk AM, Chothia C (1994b) Principles determining the structure of β-sheet barrels in proteins. II. The observed structures. J Mol Biol 236:1382–1400

    PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard TH, Chothia C (1995) SCOP: the structural classification of proteins database. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Ito K (2003) Making sense of mimic in translation termination. Trends Biochem Sci 28:99–103

    PubMed  CAS  Google Scholar 

  • Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Google Scholar 

  • O’Reilly AO, Wallace BA (2003) The peptaibol antiamoebin as a model ion channel: Similarities to bacterial potassium channels. J Pept Sci 9:769–775

    PubMed  Google Scholar 

  • Onuchic JN, Wolynes PG (2004) Theory of protein folding. Curr Opin Struct Biol 14:70–75

    PubMed  CAS  Google Scholar 

  • Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol 6:e18

    PubMed  Google Scholar 

  • Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW (2007) Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317:1544–1548

    PubMed  CAS  Google Scholar 

  • Pak M, Hoskins JR, Singh SK, Maurizi MR, Wickner S (1999) Concurrent chaperone and protease activities of ClpAP and the requirement for the N-terminal ClpA ATP binding site for chaperone activity. J Biol Chem 274:19316–19322

    PubMed  CAS  Google Scholar 

  • Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70:339–348

    PubMed  CAS  Google Scholar 

  • Pffeifer T, Soyer OS, Bonhoeffer S (2005) The evolution of connectivity in metabolic networks. PLoS Biol 3:1269–1275

    Google Scholar 

  • Pham Y, Li L, Erdogan O, Weinreb V, Butterfoss GL, Kuhlman B, Carter CW Jr (2007) A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Mol Cell 25:851–862

    PubMed  CAS  Google Scholar 

  • Pohorille A, Deamer DW (2009) Self-assembly and function of primitive cell membranes. Res Microbiol 160:449–456

    PubMed  CAS  Google Scholar 

  • Pohorille A, Scheweighofer K, Wilson MA (2005) The origin and early evolution of membrane channels. Astrobiology 5:1–17

    PubMed  CAS  Google Scholar 

  • Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29:4031–4037

    PubMed  CAS  Google Scholar 

  • Popot JL, Engelman DM (2000) Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 69:881–922

    PubMed  CAS  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    PubMed  CAS  Google Scholar 

  • Praetorius-Ibba M, Hausmann CD, Paras M, Rogers TE, Ibba M (2007) Functional association between three archaeal aminoacyl-tRNA synthetases. J Biol Chem 282:3680–3687

    PubMed  CAS  Google Scholar 

  • Remmert M, Biegert A, Linke D, Lupas AN, Söding J (2010) Evolution of outer membrane β-barrels from an ancestral ββ hairpin. Mol Biol Evol 27:1348–1358

    PubMed  CAS  Google Scholar 

  • Renthal R (2010) Helix insertion into bilayers and the evolution of membrane proteins. Cell Mol Life Sci 67:1077–1088

    PubMed  CAS  Google Scholar 

  • Ribas de Pouplana L, Schimmel P (2001a) Aminoacyl-tRNA synthetases: potential markers of genetic code development. Trends Biochem Sci 26:591–595

    PubMed  CAS  Google Scholar 

  • Ribas de Pouplana L, Schimmel P (2001b) Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104:191–193

    PubMed  CAS  Google Scholar 

  • Robertson MP, Scott WG (2007) The structural basis of ribozyme-catalyzed RNA assembly. Science 315:1549–1553

    PubMed  CAS  Google Scholar 

  • Robinson JC, Kerjan P, Mirande M (2000) Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein-protein interactions and mechanism of complex assembly. J Mol Biol 304:983–994

    PubMed  CAS  Google Scholar 

  • Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786

    PubMed  CAS  Google Scholar 

  • Rode BM (2007) The first steps of chemical evolution towards the origin of life. Chem Biodivers 4:2674–2702

    PubMed  CAS  Google Scholar 

  • Rodin SN, Ohno S (1995) Two types of aminoacyl-tRNA synthetases could be originally encoded by complementary strands of the same nucleic acid. Orig Life Evol Biosph 25:565–589

    PubMed  CAS  Google Scholar 

  • Rodin SN, Rodin AS (2008) On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity 100:341–355

    PubMed  CAS  Google Scholar 

  • Rodin AS, Szathmary E, Rodin SN (2009) One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation. Biol Direct 4:4

    PubMed  Google Scholar 

  • Rodnina MV, Wintermeyer W (2009) Recent mechanistic insights into eukaryotic ribosomes. Curr Opin Cell Biol 21:435–443

    PubMed  CAS  Google Scholar 

  • Saier MH Jr (2003) Tracing pathways of transport protein evolution. Mol Microbiol 48:1145–1156

    PubMed  CAS  Google Scholar 

  • Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C (2009) The Transporter Classification Database: recent advances. Nucleic Acids Res 37:D274–D278

    PubMed  CAS  Google Scholar 

  • Seelig B, Szostak JW (2007) Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448:828–831

    PubMed  CAS  Google Scholar 

  • Severin K, Lee DH, Kennan AJ, Ghadiri MR (1997) A synthetic peptide ligase. Nature 389:706–709

    PubMed  CAS  Google Scholar 

  • Smith MD, Rosenow MA, Wang M, Allen JP, Szostak JW, Chaput JC (2007) Structural insights into the evolution of a non-biological protein: importance of surface residues in protein fold optimization. PLoS ONE 2(5):e467

    PubMed  Google Scholar 

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in non-ribosomal peptide synthetases. Chem Biol 6:493–505

    PubMed  CAS  Google Scholar 

  • Sterner R, Höcker B (2005) Catalytic versatility, stability, and evolution of the (βα)8-barrel enzyme fold. Chem Rev 105:4038–4055

    PubMed  CAS  Google Scholar 

  • Stomel JM, Wilson JW, León MA, Stafford P, Chaput JC (2009) A man-made ATP-binding protein evolved independent of nature causes abnormal growth in bacterial cells. PLoS ONE 4(10):e7385

    PubMed  Google Scholar 

  • Sun F-J, Caetano-Anollés G (2008a) Evolutionary patterns in the sequence and structure of transfer RNA: a window into early translation and the genetic code. PLoS ONE 3:e2799

    PubMed  Google Scholar 

  • Sun F-J, Caetano-Anollés G (2008b) The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol 66:21–35

    PubMed  CAS  Google Scholar 

  • Sun F-J, Caetano-Anollés G (2009) The evolutionary history of the structure of 5S ribosomal RNA. J Mol Evol 69:430–443

    PubMed  CAS  Google Scholar 

  • Sun F-J, Caetano-Anollés G (2010) The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinform 11:153

    Google Scholar 

  • Swofford DL (2002) Phylogenetic analysis using parsimony and other programs (PAUP*). Ver 4.0b10. Sinauer, Sunderland

    Google Scholar 

  • Tam R, Saier MH Jr (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346

    PubMed  CAS  Google Scholar 

  • Tanovic A, Samel SA, Essen LO, Marahiel MA (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 322:659–663

    Google Scholar 

  • Taylor WR (2002) A ‘periodic table’ for protein structures. Nature 416:657–660

    PubMed  CAS  Google Scholar 

  • Taylor WR (2007) Evolutionary transitions of protein fold space. Curr Opin Struct Biol 17:354–361

    PubMed  CAS  Google Scholar 

  • Teichmann SA, Rison SCG, Thornton JM, Riley M, Gough J, Chothia C (2001) Small-molecule metabolism: an enzyme mosaic. Trends Biotechnol 19:482–486

    PubMed  CAS  Google Scholar 

  • Terada T, Nureki O, Ishitani R, Ambrogelly A, Ibba M, Söll D, Yokohama S (2002) Functional convergence of two lysyl-tRNA synthetases with unrelated topologies. Nat Struct Biol 9:257–262

    PubMed  CAS  Google Scholar 

  • Ungermann C, Nichols BJ, Pelham HR, Wickner W (1998) A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J Cell Biol 140:61–69

    PubMed  CAS  Google Scholar 

  • Vale RD (2000) AAA proteins: lords of the ring. J Cell Biol 150:F13–F19

    PubMed  CAS  Google Scholar 

  • Vauthey S, Santoso S, Gong H, Watson N, Zhang S (2002) Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc Natl Acad Sci USA 99:5355–5360

    PubMed  CAS  Google Scholar 

  • Vetting MW, Hedge SS, Blanchard JS (2010) The structure and mechanism of the Mycobacterium tuberculosis cyclodityrosine synthetase. Nat Chem Biol 6:797–799

    PubMed  CAS  Google Scholar 

  • Vidonne A, Philp D (2009) Making molecules make themselves—the chemistry of artificial replicators. Eur J Org Chem 5:593–610

    Google Scholar 

  • Vlassov A, Khvorova A, Yarus M (2001) Binding and disruption of phospholipid bilayers by supramolecular RNA complexes. Proc Natl Acad Sci USA 98:7706–7711

    PubMed  CAS  Google Scholar 

  • Von Delft F, Lewendon A, Dhanaraj V, Blundell TL, Abell C, Smith AG (2001) The crystal structure of E. coli pantothenate synthetase confirms it as a member of the cytidyltransferase superfamily. Structure 9:439–450

    Google Scholar 

  • Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    PubMed  CAS  Google Scholar 

  • Wang M, Caetano-Anollés G (2006) Global phylogeny determined by the combination of protein domains in proteomes. Mol Biol Evol 23:2444–2454

    PubMed  CAS  Google Scholar 

  • Wang M, Caetano-Anollés G (2009) The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world. Structure 17:66–78

    PubMed  CAS  Google Scholar 

  • Wang M, Boca SM, Kalelkar R, Mittenthal JE, Caetano-Anollés G (2006) A phylogenomic reconstruction of the protein world based on a genomic census of protein fold architecture. Complexity 12:27–40

    CAS  Google Scholar 

  • Wang M, Yafremava LS, Caetano-Anolles D, Mittenthal JE, Caetano-Anolles G (2007) Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res 17:1572–1585

    PubMed  Google Scholar 

  • Wang M, Jiang Y-Y, Kim KM, Qu G, Ji HF, Mittenthal JE, Zhang H-Y, Caetano-Anollés G (2011) A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. Mol Biol Evol 28:567–582

    PubMed  CAS  Google Scholar 

  • Watson JD, Milner-White EJ (2002) A novel main-chain anion-binding site in proteins: the nest. A particular combination of ϕ, ψ values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J Mol Biol 315:171–182

    PubMed  CAS  Google Scholar 

  • Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA (2004) Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol 11:1101–1106

    PubMed  CAS  Google Scholar 

  • White SR, Lauring B (2007) AAA+ ATPases: achieving diversity of function with conserved machinery. Traffic 8:1657–1667

    PubMed  CAS  Google Scholar 

  • White SH, von Heijne G (2005) Transmembrane helices before, during, and after insertion. Curr Opin Struct Biol 15:378–386

    PubMed  CAS  Google Scholar 

  • Widmann J, Di Giulio M, Yarus M, Knight R (2005) tRNA creation by hairpin duplication. J Mol Evol 61:524–530

    PubMed  CAS  Google Scholar 

  • Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J (2009) SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37:D380–D386

    PubMed  CAS  Google Scholar 

  • Yang S, Doolittle RF, Bourne PE (2005) Phylogeny determined based on protein domain content. Proc Natl Acad Sci USA 102:373–378

    PubMed  CAS  Google Scholar 

  • Yarus M (2010) Getting pass the RNA world: the initial Darwinian ancestor. Cold Spring Harb Perspect Biol 1:a003590

    Google Scholar 

  • Ycas M (1974) On earlier states of the biochemical system. J Theor Biol 44:145–160

    PubMed  CAS  Google Scholar 

  • Ye J, Osborne AR, Groll M, Rapoport TA (2004) RecA-like motor ATPases—lessons from structures. Biochim Biophys Acta 1659:1–18

    PubMed  CAS  Google Scholar 

  • Yomo T, Saito S, Sasai M (1999) Gradual development of protein-like global structures through functional selection. Nat Struct Biol 6:743–746

    PubMed  CAS  Google Scholar 

  • Zempleni J, Wijeratne SS, Hassan YI (2009) Biotin. Biofactors 35:36–46

    PubMed  Google Scholar 

  • Zhang Y, Hubner I, Arakaki A, Shakhnovich E, Skolnick J (2006) On the origin and highly likely completeness of single-domain protein structures. Proc Natl Acad Sci USA 103:2605–2610

    PubMed  CAS  Google Scholar 

  • Zhang W, Dunkle JA, Cate JHD (2009) Structures of the ribosome in intermediate states of ratcheting. Science 325:1014–1017

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by the National Science Foundation (MCB-0749836), CREES-USDA, and the International Atomic Energy Agency in Vienna. Any opinions, findings, and conclusions and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Caetano-Anollés.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00239-012-9485-4.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1.21 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caetano-Anollés, G., Kim, K.M. & Caetano-Anollés, D. The Phylogenomic Roots of Modern Biochemistry: Origins of Proteins, Cofactors and Protein Biosynthesis. J Mol Evol 74, 1–34 (2012). https://doi.org/10.1007/s00239-011-9480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-011-9480-1

Keywords

Navigation