Skip to main content
Log in

Phylogenetic Analysis Reveals Rapid Evolutionary Dynamics in the Plant RNA Virus Genus Tobamovirus

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Early studies on the evolutionary dynamics of plant RNA viruses suggested that they may evolve more slowly than their animal counterparts, sometimes dramatically so. However, these estimates were often based on an assumption of virus–host codivergence over time-scales of many millions of years that is difficult to verify. An important example are viruses of the genus Tobamovirus, where the assumption of host–virus codivergence over 100 million years has led to rate estimates in the range of ~1 × 10−8 nucleotide substitutions per site, per year. Such a low evolutionary rate is in apparent contradiction with the ability of some tobamoviruses to quickly overcome inbred genetic resistance. To resolve how rapidly molecular evolution proceeds in the tobomaviruses, we estimated rates of nucleotide substitution, times to common ancestry, and the extent of congruence between virus and host phylogenies. Using Bayesian coalescent methods applied to time-stamped sequences, we estimated mean evolutionary rates at the nucleotide and amino acid levels of between 1 × 10−5 and 1.3 × 10−3 substitutions per site, per year, and hence similar to those seen in a broad range of animal and plant RNA viruses. Under these rates, a conservative estimate for the time of origin of the sampled tobamoviruses is within the last 100,000 years, and hence a far more recently than proposed assuming codivergence. This is supported by our cophylogeny analysis which revealed significantly discordant evolutionary histories between the tobamoviruses and the plant families they infect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Antignus Y, Lachman O, Pearlsman M, Maslenin L, Rosner A (2008) A new pathotype of pepper mild mottle virus (PMMoV) overcomes the L4 resistance genotype of pepper cultivars. Plant Dis 92:1033–1037

    Article  CAS  Google Scholar 

  • D’Arcy WG (1991) The Solanaceae since 1976, with a review of its biogeography. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Garden and Linnaean Society of London, London, pp 75–138

    Google Scholar 

  • Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178

    Article  CAS  PubMed  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    CAS  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed  Google Scholar 

  • Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  • Fargette D, Pinel-Galzi A, Sereme D, Lacombe S, Hebrard E, Traore O, Konate G (2008) Diversification of Rice yellow mottle virus and related viruses spans the history of agriculture from the Neolithic to the present. PLoS Pathog 4:e1000125

    Article  PubMed  Google Scholar 

  • Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball BA (2005) Virus taxonomy: classification and nomenclature of viruses. 8th Report of the International Committee. Academic Press, San Diego

    Google Scholar 

  • Firth C, Kitchen A, Shapiro C, Suchard MA, Holmes EC, Rambaut A (2010) Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol. doi:10.1093/molbev/msq088

  • Flor HH (1955) Host-parasite interactions in flax-its genetic and other implications. Phytopathology 45:680–685

    Google Scholar 

  • Fraile A, Malpica JM, Aranda MA, Rodríguez-Cerezo E, García-Arenal F (1996) Genetic diversity in tobacco mild green mosaic tobamovirus infecting the wild plant Nicotiana glauca. Virology 223:148–155

    Article  CAS  PubMed  Google Scholar 

  • Fraile A, Escriu F, Aranda MA, Malpica JM, Gibbs AJ, García-Arenal F (1997) A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J Virol 71:8316–8320

    CAS  PubMed  Google Scholar 

  • French R, Stenger DC (2003) Evolution of Wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu Rev Phytopathol 41:199–214

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Meshi T, Okada Y, Otsuki Y, Takebe I (1981) Correlation between particle multiplicity and location on virion RNA of the assembly initiation site for viruses of the tobacco mosaic virus group. Proc Natl Acad Sci USA 78:4231–4235

    Article  CAS  PubMed  Google Scholar 

  • García-Arenal F, McDonald BA (2003) An analysis of the durability of resistance to plant viruses. Phytopathology 93:941–952

    Article  PubMed  Google Scholar 

  • Gibbs AJ (1980) How ancient are the tobamoviruses? Intervirology 14:101–108

    Article  CAS  PubMed  Google Scholar 

  • Gibbs AJ (1986) Tobamovirus classification. In: van Regenmortel MHV, Fraenkel-Conrat H (eds) The plant viruses. 2. The rod-shaped plant viruses. Plenum Press, New York, pp 167–180

    Google Scholar 

  • Gibbs AJ (1999) Evolution and origin of tobamoviruses. Phil Trans R Soc Lond B 354:593–602

    Article  CAS  Google Scholar 

  • Gibbs AJ, Gibbs MJ, Ohshima K, García-Arenal F (2008a) More plant virus evolution; past present and future. In: Domingo E, Parrish CR, Holland JJ (eds) Origin and evolution of viruses, 2nd edn. Academic Press, London, pp 229–250

    Google Scholar 

  • Gibbs AJ, Ohshima K, Phillips MJ, Gibbs MJ (2008b) The prehistory of potyviruses: their initial radiation was during the dawn of agriculture. PLoS One 3:e2523

    Article  PubMed  Google Scholar 

  • Gibbs AJ, Fargette D, García-Arenal F, Gibbs MJ (2010) Time—the emerging dimension of plant virus studies. J Gen Virol 91:13–22

    Article  CAS  PubMed  Google Scholar 

  • Hadidi A, Khetarpal RK, Koganezawa H (1998) Plant virus disease control. APS Press, St. Paul

    Google Scholar 

  • Holmes FO (1951) Indications of a new world origin of tobacco mosaic virus. Phytopathology 41:341–349

    Google Scholar 

  • Jackson PA, Charleston MA (2004) A cophylogenetic perspective of RNA-virus evolution. Mol Biol Evol 21:45–57

    Article  CAS  PubMed  Google Scholar 

  • Lartey RT, Voss TC, Melcher U (1996) Tobamovirus evolution: gene overlaps, recombination, and taxonomic implications. Mol Biol Evol 13:1327–1338

    CAS  PubMed  Google Scholar 

  • Li H, Roossinck MJ (2004) Genetic bottlenecks reduce population variation in an experimental RNA virus population. J Virol 78:10582–10587

    Article  CAS  PubMed  Google Scholar 

  • Malpica JM, Fraile A, Moreno I, Obies CI, Drake JW, García-Arenal F (2002) The rate and character of spontaneous mutation in an RNA virus. Genetics 162:1505–1511

    CAS  PubMed  Google Scholar 

  • Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  CAS  PubMed  Google Scholar 

  • Olmstead R, Palmer JD (1991) Chloroplast DNA and systematics of the Solanaceae. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Garden and Linnaean Society of London, London, pp 161–168

    Google Scholar 

  • Pagán I, Holmes EC (2010) Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. J Virol 84:6177–6187

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (1996) Se-Al: sequence alignment editor. http://evolve.zoo.ox.ac.uk/

  • Rambaut A (2009) Path-O-Gen: temporal signal investigation tool. http://tree.bio.ed.ac.uk/software/pathogen/

  • Rast ATB (1988) Pepper tobamoviruses and pathotypes used in resistance breeding. Capsicum Newslett 7:20–24

    Google Scholar 

  • Rodriguez-Cerezo E, García-Arenal F (1991) High genetic stability in natural populations of the plant RNA virus Tobacco mild green mosaic virus. J Mol Evol 32:328–332

    Article  CAS  Google Scholar 

  • Roossinck M, Ali A (2007) Mechanisms of plant virus evolution and identification of genetic bottlenecks: impact on disease management. In: Punja ZK, De Boer SH, Sanfaçon S (eds) Biotechnology and plant disease management. CABI Publishing, Wallingford, pp 109–124

    Chapter  Google Scholar 

  • Sacristan S, Malpica JM, Fraile A, Garcia-Arenal F (2003) Estimation of population bottlenecks during movement of tobacco mosaic virus in tobacco plants. J Virol 77:9906–9911

    Article  CAS  PubMed  Google Scholar 

  • Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol

  • Savolainen V, Fay MF, Albach DC, Backlund A, van der Bank M, Cameron KM, Johnson SA, Lledó MD, Pintaud J-C, Powell M, Sheaman MC, Soltis DE, Soltis PS, Weston P, Whitten WM, Wurdack KJ, Chase MW (2000) Phylogeny of the Eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bull 55:257–309

    Article  Google Scholar 

  • Simmons HE, Holmes EC, Stephenson AG (2008) Rapid evolutionary dynamics of zucchini yellow mosaic virus. J Gen Virol 89:1081–1085

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    CAS  PubMed  Google Scholar 

  • Wu B, Melcher U, Guo X, Wang X, Fan L, Zhou G (2008) Assessment of codivergence of Mastrevirus with their plant hosts. BMC Evol Biol 8:335

    Article  PubMed  Google Scholar 

  • Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Marie Curie Fellowship PIOF-GA-2009-236470 to IP, NSERC Canada to CF, and NIH grant R01-GM080533 to ECH. We thank Dr. Andrew Kitchen for valuable comments, and all the authors who kindly provided collection information for their sequence data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Pagán.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 360 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagán, I., Firth, C. & Holmes, E.C. Phylogenetic Analysis Reveals Rapid Evolutionary Dynamics in the Plant RNA Virus Genus Tobamovirus . J Mol Evol 71, 298–307 (2010). https://doi.org/10.1007/s00239-010-9385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9385-4

Keywords

Navigation