Skip to main content
Log in

Structure and Evolution of a New Avian MHC Class II B Gene in a Sub-Antarctic Seabird, the Thin-Billed Prion (Procellariiformes: Pachyptila belcheri)

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The major histocompatibility complex encodes molecules that present foreign peptides to T cells of the immune system. The peptide binding region (PBR) of these molecules is among the most polymorphic regions found in vertebrate taxa. Genomic cloning approaches are improving our understanding of the evolution of this multigene family in nonmodel avian groups. By building a cosmid library, a new MHC class II B gene, Pabe-DAB1, was isolated and characterized at the genomic level in a sub-Antarctic seabird, the thin-billed prion (Pachyptila belcheri). Pabe-DAB1 exhibits the hallmark structural features of functional MHC class II loci. Direct sequencing of the PBR encoding exon in a panel of prions revealed significantly higher levels of genetic diversity compared to two noncoding neutral loci, with most alleles differing by at least one replacement substitution in the peptide binding codons. We estimated evolutionary dynamics for Pabe-DAB1 using a variety of Bayesian and other approaches. Evidence for balancing selection comes from a spatially variable ratio of nonsynonymous-to-synonymous substitutions (mean d N/d S = 2.87) in the PBR, with sites predicted to be functionally relevant exhibiting the highest ω values. We estimate the population recombination rate to be approximately 0.3 per site per generation, indicating an important role for recombination in generating polymorphism at this locus. Pabe-DAB1 is among the few avian class II loci characterized at the genomic level and with a known intron-exon structure, a feature that greatly facilitated the amplification and sequencing of a single MHC locus in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcaide M, Edwards SV, Negro JJ (2007) Characterization, polymorphism and evolution of MHC class II B genes in birds of prey. J Mol Evol 65:541–554

    Article  PubMed  CAS  Google Scholar 

  • Baum J, Thomas AW, Conway DJ (2003) Evidence for diversifying selection on erythrocyte-binding antigens of Plasmodium falciparum and P. vivax. Genetics 163:1327–1336

    CAS  Google Scholar 

  • Benoist C, Mathis D (1990) Regulation of major histocompatibility complex class-II genes: X, Y and other letters of the alphabet. Annu Rev Immunol 8:681–715

    PubMed  CAS  Google Scholar 

  • Bergstrom TF, Josefsson A, Erlich HA, Gyllensten UB (1997) Analysis of intron sequences at the class II HLA-DRB1 locus: implications for the age of allelic diversity. Hereditas 127:1–5

    Article  PubMed  CAS  Google Scholar 

  • Birdsell JA (2002) Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Mol Biol Evol 19:1181–1197

    PubMed  CAS  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    Article  PubMed  CAS  Google Scholar 

  • Burri R, Hirzel HN, Salamin N, Roulin A, Fumagalli L (2008) Evolutionary patterns of MHC Class II B in owls and their implications for the understanding of avian MHC evolution. Mol Biol Evol 25:1180–1191

    Article  PubMed  CAS  Google Scholar 

  • Carrington M (1999) Recombination within the human MHC. Immunol Rev 167:245–256

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA (2002) Selection for short introns in highly expressed genes. Nat Genet 31:415–418

    PubMed  CAS  Google Scholar 

  • Cracraft J, Baker FK, Braun M, Harshman J, Dyke GJ, Feinstein J, Stanley S, Cibois A, Schikler P, Beresford P, Garcia-Moreno J, Sorenson MD, Yuri T, Mindell DP (2004) Phylogenetic relationships among modern birds (Neornithes): toward an avian tree of life. In: Cracraft J, Donohue MJ (eds) Assembling the tree of life. Oxford University Press, New York, pp 468–489

    Google Scholar 

  • Dorn A, Durand B, Marfing C, Le Meur M, Benoist C, Mathis D (1987) Conserved MHC complex class II boxes—X and Y—are transcriptional control elements and specifically bind nuclear proteins. Proc Natl Acad Sci USA 84:6249–6253

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Dillon M (2004) Hitchhiking and recombination in birds:evidence from Mhc-linked and unlinked loci in red-winged blackbirds (Agelaius phoeniceus). Genet Res 84:175–192

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Grahn M, Potts WK (1995a) Dynamics of Mhc evolution in birds and crocodilians: amplification of class II genes with degenerate primers. Mol Ecol 4:719–729

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Wakeland EK, Potts WK (1995b) Contrasting histories of avian and mammalian Mhc genes revealed by class II B sequences from songbirds. Proc Natl Acad Sci USA 92:12200–12204

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Gasper J, March M (1998) Genomics and polymorphism of Agph-DAB1, an Mhc class II B gene in red-winged blackbirds (Agelaius phoeniceus). Mol Biol Evol 15:236–250

    PubMed  CAS  Google Scholar 

  • Edwards SV, Hess CM, Gasper J, Garrigan D (1999) Toward an evolutionary genomics of the avian Mhc. Immunol Rev 167:119–132

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Gasper J, Garrigan D, Martindale D, Koop BF (2000a) A 39-kb sequence around a blackbird Mhc class II gene: ghost of selection past and songbird genome architecture. Mol Biol Evol 17:1384–1395

    PubMed  CAS  Google Scholar 

  • Edwards SV, Nusser J, Gasper J (2000b) Characterization and evolution of major histocompatibility complex (MHC) genes in non-model organisms, with examples from birds. In: Baker AJ (ed) Molecular methods in ecology. Blackwell Science, Cambridge, pp 168–207

    Google Scholar 

  • Ekblom R, Grahn M, Hoglund J (2003) Patterns of polymorphism in the MHC class II of a non-passerine bird, the great snipe (Gallinago media). Immunogenetics 54:734–741

    PubMed  CAS  Google Scholar 

  • Eyre-Walker A (1999) Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics 152:675–683

    PubMed  CAS  Google Scholar 

  • Garrigan D, Edwards SV (1999) Polymorphism across an exon-intron boundary in an avian Mhc class IIB gene. Mol Biol Evol 16:1599–1606

    PubMed  CAS  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    PubMed  CAS  Google Scholar 

  • Gasper JS, Shiina T, Inoko H, Edwards SV (2001) Songbird genomics: analysis of 45 kb upstream of a polymorphic Mhc class II gene in red-winged blackbirds (Agelaius phoeniceus). Genomics 75:26–34

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten UB, Sundvall M, Erlich HA (1991) Allelic diversity is generated by intra-exon sequence exchange at the DRB1 locus of primates. Proc Natl Acad Sci USA 88:3686–3690

    Article  PubMed  CAS  Google Scholar 

  • Hedrick P, Thomson G (1983) Evidence for balancing selection at HLA. Genetics 104:449–456

    PubMed  CAS  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. Bioscience 52:423–431

    Article  Google Scholar 

  • Hess CM, Gasper J, Hoekstra HE, Hill CE, Edwards SV (2000) MHC class II pseudogene and genomic signature of a 32-kb cosmid in the house finch (Carpodacus mexicanus). Genome Res 10:613–623

    Article  PubMed  CAS  Google Scholar 

  • Hey J, Wakeley J (1997) A coalescent estimator of the population recombination rate. Genetics 145:833–846

    PubMed  CAS  Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II: evidence for overdominant selection. Proc Natl Acad Sci USA 86:958–962

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  • Jansen R, Ledley FD (1990) Disruption of phase during PCR amplification and cloning of heterozygous target sequences. Nucleic Acids Res 18:5153–5156

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J (1995) A “minimal essential Mhc” and an “unrecognized” Mhc: two extremes in selection for polymorphism. Immunol Rev 143:63–88

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Milne S, Gobel TWF et al (1999a) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Jacob J, Shaw I, Walker B, Milne S, Beck S, Salomonsen J (1999b) Gene organisation determines evolution of function in the chicken MHC. Immunol Rev 167:101–117

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. John Wiley & Sons, New York

    Google Scholar 

  • Klein J, Bontrop RE, Dawkins RL et al (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219

    PubMed  CAS  Google Scholar 

  • Kuhner MK (2006) Lamarc 2.0: maximum likelihood and Bayesian estimate of population parameters. Bioinformatics 22:768–770

    Article  PubMed  CAS  Google Scholar 

  • Longeri M, Zanotti M, Damiani G (2002) Recombinant DRB sequences produced by mismatch repair of hereroduplexes during cloning in Escherichia coli. Eur J Immunogenet 29:517–523

    Article  PubMed  CAS  Google Scholar 

  • Meyerhans A, Vartanian JP, Wain-Hobson S (1990) DNA recombination during PCR. Nucleic Acids Res 18:1687–1691

    Article  PubMed  CAS  Google Scholar 

  • Miller HC, Lambert DM (2004) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721

    Article  PubMed  CAS  Google Scholar 

  • Nevitt GA, Veit RR, Kareiva P (1995) Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds. Nature 376:680–682

    Article  CAS  Google Scholar 

  • Ohta T (1991) Role of diversifying selection and gene conversion in evolution of major histocompatibility complex loci. Proc Natl Acad Sci USA 88:6716–6720

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1999) Effect of gene conversion on polymorphic patterns at major histocompatibility complex loci. Immunol Rev 167:319–325

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (2000) An attempt to measure the patchwork pattern observed among alleles at major histocompatibility complex loci. J Mol Evol 51:21–25

    PubMed  CAS  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Richman AD, Herrera LG, Nash D (2001) MHC class II beta sequence diversity in the deer mouse (Peromyscus maniculatus): implications for models of balancing selection. Mol Ecol 10:2765–2773

    PubMed  CAS  Google Scholar 

  • Richman AD, Herrera LG, Nash D (2003a) Evolution of MHC class II E beta diversity within the genus Peromyscus. Genetics 164:289–297

    Article  PubMed  CAS  Google Scholar 

  • Richman AD, Herrera LG, Nash D, Schierup MH (2003b) Relative roles of mutation and recombination in generating allelic polymorphism at an MHC class II locus in Peromyscus maniculatus. Genet Res 82:89–99

    Article  PubMed  CAS  Google Scholar 

  • Richman AD, Herrera G, Reynoso VH, Mendez G, Zambrano L (2007) Evidence for balancing selection at the DAB locus in the axolotl, Ambystoma mexicanum. Int J Immunogenet 34:475–478

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sato A, Figueroa F, Mayer WE, Grant PR, Grant BR, Klein J (2000) Mhc class II genes of Darwin’s Finches: divergence by point mutations and reciprocal recombination. In: Kasahara M (ed) Major histocompatibility complex: evolution, structure, and function. Springer, Tokyo, pp 518–541

    Google Scholar 

  • Satta Y, O’Huigin C, Takahata N, Klein J (1994) Intensity of natural selection at the major histocompatibility complex loci. Proc Natl Acad Sci USA 91:7184–7188

    Article  PubMed  CAS  Google Scholar 

  • She JX, Boehme SA, Wang TW, Bonhomme F, Wakeland EK (1991) Amplification of major histocompatibility complex class II gene diversity by intraexonic recombination. Proc Natl Acad Sci USA 88:453–457

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Shimizu C, Oka A et al (1999) Gene organization of the quail major histocompatibility complex (MhcCoja) class I region. Immunogenetics 49:384–394

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Shimizu C, Hosomichi K et al (2004) Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 172:6751–6763

    PubMed  CAS  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  • Swanson WJ, Yang Z, Wolfner MF, Aquadro CF (2001) Positive darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc Natl Acad Sci USA 98:2509–2514

    Article  PubMed  CAS  Google Scholar 

  • Takahata N (1990) A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci USA 87:2419–2423

    Article  PubMed  CAS  Google Scholar 

  • Takahata N, Satta Y, Klein J (1992) Polymorphism and balancing selection at major histocompatibility complex loci. Genetics 130:925–938

    PubMed  CAS  Google Scholar 

  • Takezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833

    PubMed  CAS  Google Scholar 

  • Thompson JR, Marcelino LA, Polz MF (2002) Heteroduplexes in mixed-template amplifications:formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 30:2083–2088

    Article  PubMed  CAS  Google Scholar 

  • Van Den Bussche RA, Hoofer SR, Lochmiller RL (1999) Characterization of Mhc-DRB allelic diversity in white-tailed deer (Odocoileus virginianus) provides insight into Mhc-DRB allelic evolution within Cervidae. Immunogenetics 49:429–437

    Article  Google Scholar 

  • Walsh HE, Friesen VL (2003) A comparison of intraspecific patterns of DNA sequence variation in mitochondrial DNA, alpha-enolase, and MHC class II B loci in auklets (Charadriiformes: Alcidae). J Mol Evol 57:681–693

    Article  PubMed  CAS  Google Scholar 

  • Warham J (1990) The petrels. their ecology and breeding systems, Academic Press, London

    Google Scholar 

  • Westerdahl H, Wittzell H, Schantz T (1999) Polymorphism and transcription of Mhc class I genes in a passerine bird, the great reed warbler. Immunogenetics 49:158–170

    Article  PubMed  CAS  Google Scholar 

  • Wilson DJ, McVean G (2006) Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172:1411–1425

    Article  PubMed  CAS  Google Scholar 

  • Wittzell H, Bernot A, Auffray C, Zoorob R (1999) Concerted evolution of two Mhc class II B loci in pheasants and domestic chickens. Mol Biol Evol 16:479–490

    PubMed  CAS  Google Scholar 

  • Zoorob R, Behar G, Kroemer G, Auffray C (1990) Organization of a functional chicken class II B gene. Immunogenetics 31:179–187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks are due to I. Strange and the New Island Conservation Trust for allowing us access to New Island and to work with its population of thin-billed prions. The authors are grateful to J. Gasper for his invaluable help during lab work and assistance at different stages of this study. Help from W. Swanson and B. Wakimoto was also instrumental in the success of this project. S. MacKay helped with sample collection and software data analysis. H. Walsh kindly provided us with her MHC primers. J. C. Silva, H. Walsh, J. Gasper, and anonymous reviewer provided useful comments on the manuscript. Funding was provided by research grants from Fundação para a Ciência e a Tecnologia to MCS (BD/9356/96 and BPD/22276/2006). Financial support was also provided by the New Island Conservation Trust, the Margaret Morse Nice Fund, and Sigma-XI to M.C.S. and by grants from the National Science Foundation to SVE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica C. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, M.C., Edwards, S.V. Structure and Evolution of a New Avian MHC Class II B Gene in a Sub-Antarctic Seabird, the Thin-Billed Prion (Procellariiformes: Pachyptila belcheri). J Mol Evol 68, 279–291 (2009). https://doi.org/10.1007/s00239-009-9200-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9200-2

Keywords

Navigation