Skip to main content

Advertisement

Log in

Envelope-Like Retrotransposons in the Plant Kingdom: Evidence of Their Presence in Gymnosperms (Pinus pinaster)

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Retroviruses differ from retrotransposons due to their infective capacity, which depends critically on the encoded envelope. Some plant retroelements contain domains reminiscent of the env of animal retroviruses but the number of such elements described to date is restricted to angiosperms. We show here the first evidence of the presence of putative env-like gene sequences in a gymnosperm species, Pinus pinaster (maritime pine). Using a degenerate primer approach for conserved domains of RNaseH gene, three clones from putative envelope-like retrotransposons (PpRT2, PpRT3, and PpRT4) were identified. The env-like sequences of P. pinaster clones are predicted to encode proteins with transmembrane domains. These sequences showed identity scores of up to 30% with env-like sequences belonging to different organisms. A phylogenetic analysis based on protein alignment of deduced aminoacid sequences revealed that these clones clustered with env-containing plant retrotransposons, as well as with retrotransposons from invertebrate organisms. The differences found among the sequences of maritime pine clones isolated here suggest the existence of different putative classes of env-like retroelements. The identification for the first time of env-like genes in a gymnosperm species may support the ancestrality of retroviruses among plants shedding light on their role in plant evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Berenyi M, Gichuki ST, Schmidt J, Burg K (2002) Ty1-copia retrotransposon-based S-SAP (sequence-specific amplified polymorphism) for genetic analysis of sweetpotato. Theor Appl Genet 105:862–869

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43:403–434

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, Stoye JP (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 343–436

    Google Scholar 

  • Chavanne F, Zhang D-X, Liaud M-F, Cerff R (1998) Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/gypsy family highly amplified in pea and other legume species. Plant Mol Biol 37:363–375

    Article  PubMed  CAS  Google Scholar 

  • Desset S, Conte C, Dimitri P, Calco V, Dastugue B, Vaury C (1999) Mobilization of two retroelements, ZAM and Idefix, in a novel unstable line of Drosophila melanogaster. Mol Biol Evol 16:54–66

    PubMed  CAS  Google Scholar 

  • Emori Y, Shiba T, Kanaya S, Inouye S, Yuki S, Saigo K (1985) The nucleotide sequences of copia and copia-related RNA in Drosophila virus-like particles. Nature 315:773–776

    Article  PubMed  CAS  Google Scholar 

  • Favell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R (1992) Ty–1 copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    Article  Google Scholar 

  • Friesen N, Brandes A, Heslop-Harrison J (2001) Diversity, origin and distribution of retrotransposons in conifers. Mol Biol Evol 18:1176–1188

    PubMed  CAS  Google Scholar 

  • Gallo SA, Finnegan CM, Viard M, Raviv Y, Dimitrov A, Rawat SS, Puri A, Durell S, Blumenthal R (2003) The HIV env-mediated fusion reaction. Biochim Biophys Acta Biomembr 1614:36–50

    Article  CAS  Google Scholar 

  • Gonzales P, Lessios HA (1999) Evolution of sea urchin retroviral-like (SURL) elements: evidence from 40 echinoid species. Mol Biol Evol 16:938–952

    Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  • Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  Google Scholar 

  • Hull R (2001) Classifying reverse transcribing elements: a proposal and a challenge to the ICTV. Arch Virol 146:2255–2261

    Article  PubMed  CAS  Google Scholar 

  • Jordan IK, Matyunina LV, McDonald JF (1999) Evidence for the recent horizontal transfer of long terminal repeat retrotransposon. Proc Natl Acad Sci USA 96:12621–12625

    Article  PubMed  CAS  Google Scholar 

  • Kim FJ, Battini J-L, Manel N, Sitbon M (2004) Emergence of vertebrate retroviruses and envelope capture. Virology 318:183–191

    Article  PubMed  CAS  Google Scholar 

  • Konieczny A, Voytas DF, Cummingst MP, Ausubel FM (1991) A Superfamily of Arabidopsis thaliana Retrotransposons. Genetics 127:801–809

    PubMed  CAS  Google Scholar 

  • Kumar A (1998) The evolution of plant retroviruses: moving to green pastures. Trends Plant Sci 3:371–374

    Article  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Laten HM, Majumdar A, Gaucher EA (1998) Sire-1, a copia Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc Natl Acad Sci USA 95:6897–6902

    Article  PubMed  CAS  Google Scholar 

  • Laten HM, Havecker ER, Farmer LM, Voytas DF (2003) Sire1, an endogenous retrovirus family from Glycine max, is highly homogeneous and evolutionarily young. Mol Biol Evol 20:1222–1230

    Article  PubMed  CAS  Google Scholar 

  • Lerat E, Capy P (1999) Retrotransposons and retroviruses: analysis of the envelope gene. Mol Biol Evol 16:1198–1207

    PubMed  CAS  Google Scholar 

  • Malik HS, Eickbush TH (2001) Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res 11:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Marco A, Marín I (2005) Retrovirus-like elements in plants. Recent Res Dev Plant Sci 3:1–10

    Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Pozárková D, Koblízková A, Macas J (2005) PIGY, a new plant envelope-class LTR retrotransposon. Mol Gen Genom 275:43–53

    Article  CAS  Google Scholar 

  • Pearce SR (2006) SIRE-1, a putative plant retrovirus is closely related to a legume Ty1-copia retrotransposon family. Cell Mol Biol Lett 12:120–126

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis THN, Flavell AJ (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19:711–717

    Article  PubMed  CAS  Google Scholar 

  • Pélissier T, Tutois S, Deragon J-M, Tourmente S, Genestier S, Picard G (1995) Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol 29:441–452

    Article  PubMed  Google Scholar 

  • Peterson-Burch BD, Wright DA, Laten HM, Voytas DF (2000) Retroviruses in plants? Trends Genet 16:151–152

    Article  PubMed  CAS  Google Scholar 

  • Rabson AB, Graves BJ (1997) Synthesis and processing of viral RNA. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 205–261

    Google Scholar 

  • Rost B, Casadio R, Fariselli P, Sander C (1995) Transmembrane helices predicted at 95% accuracy. Prot Sci 4:521–533

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schulman AH, Flavell AJ, Ellis THN (2004) The application of LTR retrotransposons as genetic markers in plants. In: Capy W (ed) Mobile genetic elements: protocols and genomic applications. Humana Press, Totowa, NJ, pp 145–173

    Chapter  Google Scholar 

  • Stuart-Rogers C, Flavell AJ (2001) The evolution of Ty1-copia group retrotransposons in gymnosperms. Mol Biol Evol 18:155–163

    PubMed  CAS  Google Scholar 

  • Suoniemi A, Tanskanen J, Schlman AH (1998) Gypsy-like retrotransposon are widespread in the plant kingdom. Plant J 13:699–705

    Article  PubMed  CAS  Google Scholar 

  • Swanstrom R, Wills JW (1997) Synthesis, assembly, and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 263–334

    Google Scholar 

  • Syed NH, Sureshsundar S, Wilkinson MJ, Bhau BS, Cavalcanti JJV, Flavell AJ (2005) Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theor Appl Genet 110:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Tanda S, Mullor JL, Corces VG (1994) The Drosophila tom retrotransposon encodes an envelope protein. Mol Cell Biol 14:5392–5401

    PubMed  CAS  Google Scholar 

  • van-Regenmortel MHV, Fauquet CM, Bishop DHL, Carsten EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR (2000) Virus taxonomy: seventh report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, CA

    Google Scholar 

  • Vicient CM, Kalendar R, Schulman AH (2001) Envelope-class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res 11:2041–2049

    Article  PubMed  CAS  Google Scholar 

  • Vogt VM (1997) Retroviral virions and genomes. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 27–69

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Tvd Lee, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wright DA, Voytas DF (1998) Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 149:703–715

    PubMed  CAS  Google Scholar 

  • Wright DA, Voytas DF (2001) Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res 12:122–131

    Article  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based on their reverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed  CAS  Google Scholar 

  • Yano ST, Panbehi B, Das A, Laten HM (2005) Diaspora, a large family of Ty3-gypsy retrotransposons in Glycine max, is an envelope-less member of an endogenous plant retrovirus lineage. BMC Evol Biol 5(30):1–14

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Wanda Viegas and Prof. Leonor Morais-Cecílio for helpful discussions and critical readings of the manuscript. This research was supported by Fundação para a Ciência e Tecnologia (FCT), the III Framework Program of the EC, and POCI 2010 through grants SFRH/BPD/17902/2004 and SFRH/BD/32037/2006 and through project POCTI/AGR/46283/2002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia Miguel.

Additional information

Célia Miguel and Margarida Rocheta contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miguel, C., Simões, M., Oliveira, M.M. et al. Envelope-Like Retrotransposons in the Plant Kingdom: Evidence of Their Presence in Gymnosperms (Pinus pinaster). J Mol Evol 67, 517–525 (2008). https://doi.org/10.1007/s00239-008-9168-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9168-3

Keywords

Navigation