Skip to main content
Log in

The GC Content of Primates and Rodents Genomes Is Not at Equilibrium: A Reply to Antezana

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

References

  • Alvarez-Valin F, Clay O, Cruveiller S, Bernardi G (2004) Inaccurate reconstruction of ancestral GC levels creates a “vanishing isochores” effect. Mol Phylogenet Evol 31:788–793

    Article  PubMed  CAS  Google Scholar 

  • Antezana MA (2005) Mammalian GC content is very close to mutational equilibrium. J Mol Evol 61:834–836

    Article  PubMed  CAS  Google Scholar 

  • Arndt PF, Burge CB, Hwa T (2003a) DNA sequence evolution with neighbor-dependent mutation. J Comput Biol 10:313–322

    Article  CAS  Google Scholar 

  • Arndt PF, Hwa T (2005) Identification and measurement of neighbor-dependent nucleotide substitution processes. Bioinformatics 21:2322–2328

    Article  PubMed  CAS  Google Scholar 

  • Arndt PF, Hwa T, Petrov DA (2005) Substantial regional variation in substitution rates in the human genome: importance of GC content, gene density, and telomere-specific effects. J Mol Evol 60:748–763

    Article  PubMed  CAS  Google Scholar 

  • Arndt PF, Petrov DA, Hwa T (2003b) Distinct changes of genomic biases in nucleotide substitution at the time of mammalian radiation. Mol Biol Evol 20:1887–1896

    Article  CAS  Google Scholar 

  • Belle E, Duret L, Galtier N, Eyre-Walker A (2004) The decline of isochores in mammals: An assessment of the GC content variation along the mammalian phylogeny. J Mol Evol 58:653–660

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    PubMed  CAS  Google Scholar 

  • Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  Google Scholar 

  • Duret L, Semon M, Piganeau G, Mouchiroud D, Galtier N (2002) Vanishing GC-rich isochores in mammalian genomes. Genetics 162:1837–1847

    PubMed  CAS  Google Scholar 

  • Eyre-Walker A (1998) Problems with parsimony in sequences of biased base composition. J Mol Evol 47:686–690

    Article  PubMed  CAS  Google Scholar 

  • Giannelli F, Anagnostopoulos T, Green PM (1999) Mutation rates in humans. II. Sporadic mutation-specific rates and rate of detrimental human mutations inferred from hemophilia B. Am J Hum Genet 65:1580–1587

    Article  PubMed  CAS  Google Scholar 

  • Hess ST, Blake JD, Blake RD (1994) Wide variations in neighbor-dependent substitution rates. J Mol Biol 236:1022–1033

    Article  PubMed  CAS  Google Scholar 

  • Kricker MC, Drake JW, Radman M (1992) Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. Proc Natl Acad Sci U S A 89:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21:984–990

    Article  PubMed  CAS  Google Scholar 

  • Meunier J, Khelifi A, Navratil V, Duret L (2005) Homology-dependent methylation in primate repetitive DNA. Proc Natl Acad Sci USA 102:5471–5476

    Article  PubMed  CAS  Google Scholar 

  • Smith NG, Eyre-walker A (2002) The compositional evolution of the murid genome. J Mol Evol 55:197–201

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Webster MT, Smith NG, Ellegren H (2003) Compositional evolution of noncoding DNA in the human and chimpanzee genomes. Mol Biol Evol 20:278–286

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Peter Arndt for his helpful comments. This work was supported by the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Duret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duret, L. The GC Content of Primates and Rodents Genomes Is Not at Equilibrium: A Reply to Antezana. J Mol Evol 62, 803–806 (2006). https://doi.org/10.1007/s00239-005-0228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0228-7

Keywords

Navigation