Skip to main content
Log in

Accelerated Evolutionary Rate May Be Responsible for the Emergence of Lineage-Specific Genes in Ascomycota

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The evolutionary origin of “orphan” genes, genes that lack sequence similarity to any known gene, remains a mystery. One suggestion has been that most orphan genes evolve rapidly so that similarity to other genes cannot be traced after a certain evolutionary distance. This can be tested by examining the divergence rates of genes with different degrees of lineage specificity. Here the lineage specificity (LS) of a gene describes the phylogenetic distribution of that gene’s orthologues in related species. Highly lineage-specific genes will be distributed in fewer species in a phylogeny. In this study, we have used the complete genomes of seven ascomycotan fungi and two animals to define several levels of LS, such as Eukaryotes-core, Ascomycota-core, Euascomycetes-specific, Hemiascomycetes-specific, Aspergillus-specific, and Saccharomyces-specific. We compare the rates of gene evolution in groups of higher LS to those in groups with lower LS. Molecular evolutionary analyses indicate an increase in nonsynonymous nucleotide substitution rates in genes with higher LS. Several analyses suggest that LS is correlated with the evolutionary rate of the gene. This correlation is stronger than those of a number of other factors that have been proposed as predictors of a gene’s evolutionary rate, including the expression level of genes, gene essentiality or dispensability, and the number of protein-protein interactions. The accelerated evolutionary rates of genes with higher LS may reflect the influence of selection and adaptive divergence during the emergence of orphan genes. These analyses suggest that accelerated rates of gene evolution may be responsible for the emergence of apparently orphan genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Alba MM, Castresana J (2005) Inverse relationship between evolutionary rate and age of mammalian genes. Mol Biol Evol 22:598–606

    Article  PubMed  CAS  Google Scholar 

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Watanabe H, Lipman DJ, Koonin EV (2000) Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc Natl Acad Sci USA 97:11319–11324

    Article  PubMed  CAS  Google Scholar 

  • Breitkreutz BJ, Stark C, Tyers M (2003) The GRID: the General Repository for Interaction Datasets. Genome Biol 4:R23

    Article  PubMed  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Cai JJ, Smith DK, Xia X, Yuen KY (2005) MBEToolbox: a Matlab toolbox for sequence data analysis in molecular biology and evolution. BMC Bioinform 6:64

    Article  Google Scholar 

  • Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2:65–73

    Article  PubMed  CAS  Google Scholar 

  • Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76

    Article  PubMed  CAS  Google Scholar 

  • Collins LJ, Poole AM, Penny D (2003) Using ancestral sequences to uncover potential gene homologueues. Appl Bioinform 2:S85–S95

    CAS  Google Scholar 

  • Daubin V, Ochman H (2004) Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res 14:1036–1042

    Article  PubMed  CAS  Google Scholar 

  • d’Enfert C, Goyard S, Rodriguez-Arnaveilhe S, Frangeul L, Jones L, Tekaia F, Bader O, Albrecht A, Castillo L, Dominguez A, Ernst JF, Fradin C, Gaillardin C, Garcia-Sanchez S, de Groot P, Hube B, Klis FM, Krishnamurthy S, Kunze D, Lopez MC, Mavor A, Martin N, Moszer I, Onesime D, Perez Martin J, Sentandreu R, Valentin E, Brown AJ (2005) CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res 33:D353–D357

    Article  PubMed  CAS  Google Scholar 

  • Domazet-Loso T, Tautz D (2003) An evolutionary analysis of orphan genes in Drosophila. Genome Res 13:2213–2219

    Article  PubMed  CAS  Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis. Wiley, New York

    Google Scholar 

  • Elhaik E, Sabath N, Graur D (2006) The “inverse relationship between evolutionary rate and age of Mammalian genes” is an artifact of increased genetic distance with rate of evolution and time of divergence. Mol Biol Evol 23:1–3

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Eisenberg D (1999) Finding families for genomic ORFans. Bioinformatics 15:759–762

    Article  PubMed  CAS  Google Scholar 

  • Fraser HB, Wall DP, Hirsh AE (2003) A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol Biol 3:11

    Article  PubMed  Google Scholar 

  • Fungal Research Community (2002) Fungal Genome Initiative; http://www.broad.mit.edu/annotation/fungi/fgi/FGI_01_whitepaper_2002.pdf

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  PubMed  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546, 563–567

    Article  PubMed  CAS  Google Scholar 

  • Graur D (1985) Amino acid composition and the evolutionary rates of protein-coding genes. J Mol Evol 22:53–62

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH (2003) Role of duplicate genes in genetic robustness against null mutations. Nature 421:63–66

    Article  PubMed  CAS  Google Scholar 

  • Hastings KE (1996) Strong evolutionary conservation of broadly expressed protein isoforms in the troponin I gene family and other vertebrate gene families. J Mol Evol 42:631–640

    Article  PubMed  CAS  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Kumar S (2003) Genomic clocks and evolutionary timescales. Trends Genet 19:200–206

    Article  Google Scholar 

  • Hirsh A, Fraser H (2001) Protein dispensability and rate of evolution. Nature 411:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader G, Moore L, Adams S, Millar A, Taylor P, Bennett K, Boutilier K (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  PubMed  CAS  Google Scholar 

  • Hurst LD, Smith NG (1999) Do essential genes evolve slowly? Curr Biol 9:747–750

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569– 4574

    Article  PubMed  CAS  Google Scholar 

  • Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002a) Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 12:962–968

    Article  CAS  Google Scholar 

  • Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002b) Microevolutionary genomics of bacteria. Theor Popul Biol 61:435–447

    Article  Google Scholar 

  • Jordan IK, Wolf YI, Koonin EV (2003) No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol 3:1

    Article  PubMed  Google Scholar 

  • Kellis M, Patterson N, Endrizzi M, Birren B, Lander E (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov FA, Ogurtsov AY, Kondrashov AS (2004) Bioinformatical assay of human gene morbidity. Nucleic Acids Res 32:1731–1737

    Article  PubMed  CAS  Google Scholar 

  • Koonin E, Fedorova N, Jackson J, Jacobs A, Krylov D, Makarova K, Mazumder R, Mekhedov S, Nikolskaya A, Rao B, Rogozin I, Smirnov S, Sorokin A, Sverdlov A, Vasudevan S, Wolf Y, Yin J, Natale D (2004) A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 5:R7

    Article  PubMed  Google Scholar 

  • Krylov DM, Wolf YI, Rogozin IB, Koonin EV (2003) Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res 13:2229–2235

    Article  PubMed  CAS  Google Scholar 

  • Kurtzman C, Fell J (1998) The yeasts, a taxonomic study. Elsevier Science, Amsterdam

    Google Scholar 

  • Makalowski W, Boguski MS (1998) Synonymous and nonsynonymous substitution distances are correlated in mouse and rat genes. J Mol Evol 47:119–121

    Article  PubMed  CAS  Google Scholar 

  • Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402:83–86

    Article  PubMed  CAS  Google Scholar 

  • Ohta T, (1995) Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J Mol Evol 40:56–63

    Article  PubMed  CAS  Google Scholar 

  • Pal C, Papp B, Hurst LD (2001) Highly expressed genes in yeast evolve slowly. Genetics 158:927–931

    PubMed  CAS  Google Scholar 

  • Pellegrini M, Marcotte E, Thompson M, Eisenberg D, Yeates T (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96:4285–4288

    Article  PubMed  CAS  Google Scholar 

  • Remm M, Storm CE, Sonnhammer EL (2001) Automatic clustering of orthologues and in-paralogs from pairwise species comparisons. J Mol Biol 314:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Rocha EP, Danchin A (2004) An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 21:108–116

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, et al. (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32:D449–D451

    Article  PubMed  CAS  Google Scholar 

  • Schmid KJ, Aquadro CF (2001) The evolutionary analysis of “orphans” from the Drosophila genome identifies rapidly diverging and incorrectly annotated genes. Genetics 159:589–598

    PubMed  CAS  Google Scholar 

  • Shields R (2004) Pushing the envelope on molecular dating. Trends Genet 20:221–222

    Article  PubMed  CAS  Google Scholar 

  • Sipiczki M (2000) Where does fission yeast sit on the tree of life? Genome Biol 1:REVIEWS1011

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, Jones T, Chu AM, Giaever G, Prokisch H, Oefner PJ, Davis RW (2002) Systematic screen for human disease genes in yeast. Nature Genet 31:400–404

    PubMed  CAS  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Tong AHY, Lesage G, Bader GD, Ding H, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield T, Judson R, Knight J, Lockshon D, Narayan V, Srinivasan M, Pochart P (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae Nature 403:623–627

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2001) The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol Biol Evol 18:1283–1292

    PubMed  CAS  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical evolution. Annu Rev Biochem 46:573–639

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Sharp PM (1993) Mammalian gene evolution: nucleotide sequence divergence between mouse and rat. J Mol Evol 37:441–456

    Article  PubMed  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, et al. (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Gu Z, Li WH (2003) Rate of protein evolution versus fitness effect of gene deletion. Mol Biol Evol 20:772–774

    Article  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Zhang P, Gu Z, Li WH (2003) Different evolutionary patterns between young duplicate genes in the human genome. Genome Biol 4:R56

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

A preliminary version of this work was presented by J.J.C. at the SMBE conference on June 17, 2004. This work was supported in part by the AIDS Trust Fund (MSS 083), Research Grant Council Grant (HKU 7363/03M), and the University Development Fund of the University of Hong Kong. We thank Professor Pak Sham and the anonymous reviewers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Cai.

Additional information

[Reviewing Editor: Dr. Martin Kreitman]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J.J., Woo, P.C., Lau, S.K. et al. Accelerated Evolutionary Rate May Be Responsible for the Emergence of Lineage-Specific Genes in Ascomycota. J Mol Evol 63, 1–11 (2006). https://doi.org/10.1007/s00239-004-0372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0372-5

Keywords

Navigation