Skip to main content

Advertisement

Log in

Temporal bone and cranial nerve findings in pontine tegmental cap dysplasia

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Pontine tegmental cap dysplasia (PTCD) is a recently described brain malformation associated with multiple cranial neuropathies, most commonly congenital sensorineural hearing loss. The purpose of this study is to systematically characterize the cranial nerve and temporal bone findings in a cohort of children with this rare condition.

Methods

Sixteen patients with PTCD and diagnostic quality imaging were retrospectively reviewed. All patients had high-resolution MR of the brain and/or internal auditory canals, and seven patients had additional high-resolution CT of the temporal bones. Studies were evaluated by two pediatric neuroradiologists for cranial nerve and temporal bone anomalies.

Results

Fifteen of 16 patients (94 %) had duplication of one or both internal auditory canals. Of the 24 total duplicated internal auditory canals, all 24 (100 %) demonstrated stenosis or atresia of the vestibulocochlear nerve canal, as well as ipsilateral vestibulocochlear nerve aplasia. Of the non-duplicated internal auditory canals, 63 % (5/8) were atretic or stenotic. Thirty-eight percent (3/8) were associated with absent vestibulocochlear nerve, and 38 % (3/8) demonstrated isolated cochlear nerve aplasia. Twenty-five percent (2/8) demonstrated normal vestibulocochlear nerves, both in the same patient. Fifteen of 16 patients overall (94 %) demonstrated bilateral cochlear nerve aplasia. Of the 32 total temporal bones, 4 (13 %) demonstrated facial nerve aplasia. Seventy-nine percent (22/28) of facial nerves that were present demonstrated an aberrant origin or course.

Conclusion

Patients with PTCD have highly characteristic temporal bone and cranial nerve findings on both CT and MR. Recognition of these findings is important for improved diagnosis of this rare disorder, particularly by CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Barth PG, Majoie CB, Caan MW et al (2007) Pontine tegmental cap dysplasia: a novel brain malformation with a defect in axonal guidance. Brain 130(Pt 9):2258–66

    Article  PubMed  Google Scholar 

  2. Maeoka Y, Yamamoto T, Ohtani K et al (1997) Pontine hypoplasia in a child with sensorineural deafness. Brain Dev 19(6):436–9

    Article  CAS  PubMed  Google Scholar 

  3. Ouanounou S, Saigal G, Birchansky S (2005) Möbius syndrome. AJNR Am J Neuroradiol 26(2):430–2

    PubMed  Google Scholar 

  4. Jissendi-Tchofo P, Doherty D, McGillivray G et al (2009) Pontine tegmental cap dysplasia: MR imaging and diffusion tensor imaging features of impaired axonal navigation. AJNR Am J Neuroradiol 30(1):113–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rauscher C, Poretti A, Neuhann TM et al (2009) Pontine tegmental cap dysplasia: the severe end of the clinical spectrum. Neuropediatrics 40(1):43–6

    Article  CAS  PubMed  Google Scholar 

  6. Huang BY, Roche JP, Buchman CA et al (2010) Brain stem and inner ear abnormalities in children with auditory neuropathy spectrum disorder and cochlear nerve deficiency. AJNR Am J Neuroradiol 31(10):1972–9

    Article  CAS  PubMed  Google Scholar 

  7. Bacciu A, Ormitti F, Pasanisi E et al (2010) Cochlear implantation in pontine tegmental cap dysplasia. Int J Pediatr Otorhinolaryngol 74(8):962–6

    Article  PubMed  Google Scholar 

  8. Macferran KM, Buchmann RF, Ramakrishnaiah R et al (1997) Pontine tegmental cap dysplasia with a 2q13 microdeletion involving the NPHP1 gene: insights into malformations of the mid-hindbrain. Semin Pediatr Neurol 17(1):69–74

    Article  Google Scholar 

  9. Szczaluba K, Szymanska K, Bekiesinska-Figatowska M et al (2010) Pontine tegmental cap dysplasia: a hindbrain malformation caused by defective neuronal migration. Neurology 74(22):1835

    Article  CAS  PubMed  Google Scholar 

  10. Briguglio M, Pinelli L, Giordano L et al (2011) Pontine tegmental cap dysplasia: developmental and cognitive outcome in three adolescent patients. Orphanet J Rare Dis 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  11. Desai NK, Young L, Miranda MA et al (2011) Pontine tegmental cap dysplasia: the neurotologic perspective. Otolaryngol Head Neck Surg 145(6):992–8

    Article  PubMed  Google Scholar 

  12. Leiva-Salinas C, Mukherjee S, Kesser BW et al (2012) Imaging case of the month: abnormalities of the cochlear nerves and internal auditory canals in pontine tegmental cap dysplasia. Otol Neurotol 33(9):e73–4

    Article  PubMed  Google Scholar 

  13. Rudaks LI, Patel S, Barnett CP (2012) Novel clinical features in pontine tegmental cap dysplasia. Pediatr Neurol 46(6):393–6

    Article  PubMed  Google Scholar 

  14. Vincenti V, Ormitti F, Ventura E (2014) Partitioned versus duplicated internal auditory canal: when appropriate terminology matters. Otol Neurotol 35(7):1140–4

    PubMed  Google Scholar 

  15. Caan MW, Barth PG, Niermeijer JM et al (2014) Ectopic peripontine arcuate fibres, a novel finding in pontine tegmental cap dysplasia. Eur J Paediatr Neurol 18(3):434–8

    Article  PubMed  Google Scholar 

  16. Chong PF, Haraguchi K, Torio M et al (2015) A case of pontine tegmental cap dysplasia with comorbidity of oculoauriculovertebral spectrum. Brain Dev 37(1):171–4

    Article  PubMed  Google Scholar 

  17. Jovanovic M, Chinnathambi MZ, Markovic I et al (2015) Pontine tegmental cap dysplasia: report of two new cases from Kuwait. Eur J Paediatr Neurol 19(1):93–7

    Article  PubMed  Google Scholar 

  18. Singh D, Hsu CC, Kwan GN et al (2015) Pontine tegmental cap dysplasia: MR evaluation of vestibulocochlear neuropathy. J Neuroimaging

  19. Olivares FP, Schuknecht HF (1979) Width of the internal auditory canal. A histological study. Ann Otol Rhinol Laryngol 88(3 Pt 1):316–23

    Article  CAS  PubMed  Google Scholar 

  20. Sakashita T, Sando I (1995) Postnatal development of the internal auditory canal studied by computer-aided three-dimensional reconstruction and measurement. Ann Otol Rhinol Laryngol 104(6):469–75

    Article  CAS  PubMed  Google Scholar 

  21. Shim HJ, Shin JE, Chung JW et al (2006) Inner ear anomalies in cochlear implantees: importance of radiologic measurements in the classification. Otol Neurotol 27(6):831–7

    Article  PubMed  Google Scholar 

  22. Sennaroglu L, Saatci I (2002) A new classification for cochleovestibular malformations. Laryngoscope 112(12):2230–41

    Article  PubMed  Google Scholar 

  23. Purcell DD, Fischbein NJ, Patel A et al (2006) Two temporal bone computed tomography measurements increase recognition of malformations and predict sensorineural hearing loss. Laryngoscope 116(8):1439–46

    Article  PubMed  Google Scholar 

  24. Vijayasekaran S, Halsted MJ, Boston M et al (2007) When is the vestibular aqueduct enlarged? A statistical analysis of the normative distribution of vestibular aqueduct size. AJNR Am J Neuroradiol 28(6):1133–8

    Article  CAS  PubMed  Google Scholar 

  25. Stjernholm C, Muren C (2002) Dimensions of the cochlear nerve canal: a radioanatomic investigation. Acta Otolaryngol 122(1):43–8

    Article  PubMed  Google Scholar 

  26. Guthrie S (2007) Patterning and axon guidance of cranial motor neurons. Nat Rev Neurosci 8(11):859–71

    Article  CAS  PubMed  Google Scholar 

  27. Albert S, Blons H, Jonard L (2006) SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur J Hum Genet 14(6):773–9

    Article  CAS  PubMed  Google Scholar 

  28. Yang JJ, Tsai CC, Hsu HM et al (2005) Hearing loss associated with enlarged vestibular aqueduct and Mondini dysplasia is caused by splice-site mutation in the PDS gene. Hear Res 99(1–2):22–30

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the patients and families whose participation made this research possible, as well as the generous supporters of the University of Washington Hindbrain Malformation Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason N. Nixon.

Ethics declarations

Compliance with ethical standards

We declare that all human and animal studies have been approved by the University of Washington Institutional Review Board and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients or their legal guardians gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nixon, J.N., Dempsey, J., Doherty, D. et al. Temporal bone and cranial nerve findings in pontine tegmental cap dysplasia. Neuroradiology 58, 179–187 (2016). https://doi.org/10.1007/s00234-015-1604-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-015-1604-7

Keywords

Navigation