Skip to main content
Log in

Functional hemispherectomy: postoperative motor state and correlation to preoperative DTI

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Functional hemispherectomy (FH) is an infrequent method to reduce seizure frequency in patients with intractable epilepsy. The risk that hemispherotomy injures brain structures involved in residual motor function is challenging to predict. Our purpose was to evaluate MR diffusion tensor imaging (DTI) to preoperatively assess residual ipsilateral motor function prior to FH.

Methods

We applied DTI in 34 patients scheduled for FH to perform fiber tracking in healthy and damaged hemispheres of the corticospinal tracts (CSTs) and of the corpus callosum. We assessed the CSTs and the commissural fibers for streamline count, for fractional anisotropy (FA), and for respective ratios (affected/unaffected side). We correlated these DTI values to post-to-prior changes of muscle strength and evaluated their diagnostic accuracy.

Results

FA of the affected CSTs and of commissural fibers was significantly higher in patients with postoperative loss of muscle strength compared to patients without (p = 0.014 and p = 0.008). In contrast, CST FA from healthy hemispheres was not different between both groups. Ratios of streamline counts and FA from CSTs were higher in patients with postoperative reduced muscle strength compared to those without (1.14 ± 0.22 vs. 0.58 ± 0.14, p = 0.040; 0.93 ± 0.05 vs. 0.74 ± 0.03, p = 0.003). CSTs’ normalized FA ratio greater than −0.085 predicted loss of muscle strength with 80 % sensitivity and 69.6 % specificity.

Conclusion

Preoperative tracking of the CST and of commissural fibers contributes to the prediction of postoperative motor outcome after functional hemispherectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kossoff EH, Vining EP, Pillas DJ, Pyzik PL, Avellino AM, Carson BS, Freeman JM (2003) Hemispherectomy for intractable unihemispheric epilepsy etiology vs outcome. Neurology 61(7):887–890

    Article  CAS  PubMed  Google Scholar 

  2. Jonas R, Nguyen S, Hu B, Asarnow RF, LoPresti C, Curtiss S, DeBode S, Yudovin S, Shields WD, Vinters HV, Mathern GW (2004) Cerebral hemispherectomy: hospital course, seizure, developmental, language, and motor outcomes. Neurology 62(10):1712–1721

    Article  CAS  PubMed  Google Scholar 

  3. Duchowny M (2004) Hemispherectomy for epilepsy: when is one half better than two? Neurology 62(10):1664–1665

    Article  PubMed  Google Scholar 

  4. Van Empelen R, Jennekens-Schinkel A, Buskens E, Helders PJ, Van NO (2004) Functional consequences of hemispherectomy. Brain 127(Pt 9):2071–2079

    Article  CAS  PubMed  Google Scholar 

  5. Schramm J, Delev D, Wagner J, Elger CE, von Lehe M (2012) Seizure outcome, functional outcome, and quality of life after hemispherectomy in adults. Acta neurochirurgica 154(9):1603–1612. doi:10.1007/s00701-012-1408-z

    Article  CAS  PubMed  Google Scholar 

  6. Schramm J, Kuczaty S, Sassen R, Elger CE, von Lehe M (2012) Pediatric functional hemispherectomy: outcome in 92 patients. Acta neurochirurgica 154(11):2017–2028. doi:10.1007/s00701-012-1481-3

    Article  CAS  PubMed  Google Scholar 

  7. Binder DK, Schramm J (2006) Transsylvian functional hemispherectomy. Childs Nerv Syst 22(8):960–966. doi:10.1007/s00381-006-0131-6

    Article  PubMed  Google Scholar 

  8. Staudt M, Gerloff C, Grodd W, Holthausen H, Niemann G, Krageloh-Mann I (2004) Reorganization in congenital hemiparesis acquired at different gestational ages. AnnNeurol 56(6):854–863

    Google Scholar 

  9. Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krageloh-Mann I (2002) Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain 125(Pt 10):2222–2237

    Article  PubMed  Google Scholar 

  10. Staudt M, Grodd W, Niemann G, Wildgruber D, Erb M, Krageloh-Mann I (2001) Early left periventricular brain lesions induce right hemispheric organization of speech. Neurology 57(1):122–125

    Article  CAS  PubMed  Google Scholar 

  11. Staudt M, Krageloh-Mann I, Grodd W (2005) Ipsilateral corticospinal pathways in congenital hemiparesis on routine magnetic resonance imaging. PediatrNeurol 32(1):37–39

    Google Scholar 

  12. Staudt M, Lidzba K, Grodd W, Wildgruber D, Erb M, Krageloh-Mann I (2002) Right-hemispheric organization of language following early left-sided brain lesions: functional MRI topography. Neuroimage 16(4):954–967

    Article  PubMed  Google Scholar 

  13. Staudt M, Niemann G, Grodd W, Krageloh-Mann I (2000) The pyramidal tract in congenital hemiparesis: relationship between morphology and function in periventricular lesions. Neuropediatrics 31(5):257–264

    Article  CAS  PubMed  Google Scholar 

  14. Beaulieu C, Allen PS (1994) Water diffusion in the giant axon of the squid: implications for diffusion-weighted MRI of the nervous system. Magn Reson Med 32(5):579–583

    Article  CAS  PubMed  Google Scholar 

  15. Beaulieu C, Allen PS (1994) Determinants of anisotropic water diffusion in nerves. Magn Reson Med 31(4):394–400

    Article  CAS  PubMed  Google Scholar 

  16. Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Fredericksen K, Pearlson GD, Melhem ER, Solaiyappan M, Raymond GV, Moser HW, van Zijl PC (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn ResonMed 47(2):215–223

    Article  Google Scholar 

  17. Winston GP (2012) The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant Imaging Med Surg 2(4):254–265. doi:10.3978/j.issn.2223-4292.2012.12.05

    PubMed Central  PubMed  Google Scholar 

  18. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR in biomedicine 15(7–8):435–455. doi:10.1002/nbm.782

    Article  PubMed  Google Scholar 

  19. Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254. doi:10.1016/j.neuroimage.2012.06.081

    Article  PubMed  Google Scholar 

  20. Koyama T, Marumoto K, Miyake H, Domen K (2013) Relationship between diffusion tensor fractional anisotropy and motor outcome in patients with hemiparesis after corona radiata infarct. J Stroke Cerebrovasc Dis 22(8):1355–1360. doi:10.1016/j.jstrokecerebrovasdis.2013.02.017

    Article  PubMed  Google Scholar 

  21. Kwon YH, Jeoung YJ, Lee J, Son SM, Kim S, Kim C, Jang SH (2012) Predictability of motor outcome according to the time of diffusion tensor imaging in patients with cerebral infarct. Neuroradiology 54(7):691–697. doi:10.1007/s00234-011-0972-x

    Article  PubMed  Google Scholar 

  22. Nelles M, Gieseke J, Flacke S, Lachenmayer L, Schild HH, Urbach H (2008) Diffusion tensor pyramidal tractography in patients with anterior choroidal artery infarcts. AJNR 29(3):488–493. doi:10.3174/ajnr.A0855

    Article  CAS  PubMed  Google Scholar 

  23. Radlinska B, Ghinani S, Leppert IR, Minuk J, Pike GB, Thiel A (2010) Diffusion tensor imaging, permanent pyramidal tract damage, and outcome in subcortical stroke. Neurology 75(12):1048–1054. doi:10.1212/WNL.0b013e3181f39aa0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Concha L, Gross DW, Wheatley BM, Beaulieu C (2006) Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients. NeuroImage 32(3):1090–1099. doi:10.1016/j.neuroimage.2006.04.187

    Article  PubMed  Google Scholar 

  25. Radlinska BA, Blunk Y, Leppert IR, Minuk J, Pike GB, Thiel A (2012) Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract. J Cereb Blood Flow Metab 32(8):1515–1524. doi:10.1038/jcbfm.2012.37

    Article  PubMed Central  PubMed  Google Scholar 

  26. van der Knaap LJ, van der Ham IJ (2011) How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res 223(1):211–221. doi:10.1016/j.bbr.2011.04.018

    Article  PubMed  Google Scholar 

  27. Schramm J (2002) Hemispherectomy techniques. NeurosurgClinNAm 13(1):113–134, ix

    Google Scholar 

  28. Schramm J, Kral T, Clusmann H (2001) Transsylvian keyhole functional hemispherectomy. Neurosurgery 49(4):891–900

    CAS  PubMed  Google Scholar 

  29. Medical Research Council (1943) Aids to the investigation of peripheral nerve injuries. War memorandum No. 7. HMSO, London

    Google Scholar 

  30. Hislop HJ, Montgomery J (2002) Daniels and Worthingham’s muscle testing techniques of manual examination. W.B. Saunders, Philadelphia

    Google Scholar 

  31. Jaermann T, Crelier G, Pruessmann KP, Golay X, Netsch T, van Muiswinkel AM, Mori S, van Zijl PC, Valavanis A, Kollias S, Boesiger P (2004) SENSE-DTI at 3 T. Magn Reson Med 51(2):230–236. doi:10.1002/mrm.10707

    Article  CAS  PubMed  Google Scholar 

  32. Jaermann T, Pruessmann KP, Valavanis A, Kollias S, Boesiger P (2006) Influence of SENSE on image properties in high-resolution single-shot echo-planar DTI. Magn Reson Med 55(2):335–342. doi:10.1002/mrm.20769

    Article  CAS  PubMed  Google Scholar 

  33. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of neurology 45(2):265–269

    Article  CAS  PubMed  Google Scholar 

  34. Stieltjes B, Kaufmann WE, van Zijl PC, Fredericksen K, Pearlson GD, Solaiyappan M, Mori S (2001) Diffusion tensor imaging and axonal tracking in the human brainstem. NeuroImage 14(3):723–735. doi:10.1006/nimg.2001.0861

    Article  CAS  PubMed  Google Scholar 

  35. Netsch T, van Muiswinkel A (2004) Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans Med Imaging 23(7):789–798. doi:10.1109/TMI.2004.827479

    Article  PubMed  Google Scholar 

  36. Wahl M, Lauterbach-Soon B, Hattingen E, Jung P, Singer O, Volz S, Klein JC, Steinmetz H, Ziemann U (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27(45):12132–12138. doi:10.1523/JNEUROSCI.2320-07.2007

    Article  CAS  PubMed  Google Scholar 

  37. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230(1):77–87. doi:10.1148/radiol.2301021640

    Article  PubMed  Google Scholar 

  38. Zhang J, Mei S, Liu Q, Liu W, Chen H, Xia H, Zhou Z, Wang L, Li Y (2013) fMRI and DTI assessment of patients undergoing radical epilepsy surgery. Epilepsy Res 104(3):253–263. doi:10.1016/j.eplepsyres.2012.10.015

    Article  PubMed  Google Scholar 

  39. Govindan RM, Chugani HT, Luat AF, Sood S (2010) Presurgical prediction of motor functional loss using tractography. Pediatr Neurol 43(1):70–72. doi:10.1016/j.pediatrneurol.2010.02.004

    Article  PubMed  Google Scholar 

  40. Choi JT, Vining EP, Mori S, Bastian AJ (2010) Sensorimotor function and sensorimotor tracts after hemispherectomy. Neuropsychologia 48(5):1192–1199. doi:10.1016/j.neuropsychologia.2009.12.013

    Article  PubMed Central  PubMed  Google Scholar 

  41. Wakamoto H, Eluvathingal TJ, Makki M, Juhasz C, Chugani HT (2006) Diffusion tensor imaging of the corticospinal tract following cerebral hemispherectomy. J Child Neurol 21(7):566–571

    Article  PubMed  Google Scholar 

  42. Moosa AN, Jehi L, Marashly A, Cosmo G, Lachhwani D, Wyllie E, Kotagal P, Bingaman W, Gupta A (2013) Long-term functional outcomes and their predictors after hemispherectomy in 115 children. Epilepsia 54(10):1771–1779. doi:10.1111/epi.12342

    Article  PubMed  Google Scholar 

  43. Holthausen H, Strobl K, Pieper T, Teixeira VA, Oppel F (1997) Prediction of motor function post hemispherectomy. Paediatric epilepsy syndromes and their surgical treatment. John Libbey

  44. Zsoter A, Pieper T, Kudernatsch M, Staudt M (2012) Predicting hand function after hemispherotomy: TMS versus fMRI in hemispheric polymicrogyria. Epilepsia 53(6):e98–101. doi:10.1111/j.1528-1167.2012.03452.x

    Article  PubMed  Google Scholar 

  45. Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65(6):1532–1556. doi:10.1002/mrm.22924

    Article  PubMed Central  PubMed  Google Scholar 

  46. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2007) Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34(1):144–155. doi:10.1016/j.neuroimage.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  47. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50(5):1077–1088. doi:10.1002/mrm.10609

    Article  CAS  PubMed  Google Scholar 

  48. Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44(4):584–590. doi:10.1203/00006450-199810000-00019

    Article  CAS  PubMed  Google Scholar 

  49. Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbudak E, Aronovitz JA, Miller JP, Lee BC, Conturo TE (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209(1):57–66. doi:10.1148/radiology.209.1.9769812

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nelles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelles, M., Urbach, H., Sassen, R. et al. Functional hemispherectomy: postoperative motor state and correlation to preoperative DTI. Neuroradiology 57, 1093–1102 (2015). https://doi.org/10.1007/s00234-015-1564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-015-1564-y

Keywords

Navigation