Skip to main content
Log in

The identification problem for complex-valued Ornstein–Uhlenbeck operators in \(L^p(\mathbb {R}^d,\mathbb {C}^N)\)

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

In this paper we study perturbed Ornstein–Uhlenbeck operators

$$\begin{aligned} \left[ \mathcal {L}_{\infty } v\right] (x)=A\triangle v(x) + \left\langle Sx,\nabla v(x)\right\rangle -B v(x),\,x\in \mathbb {R}^d,\,d\geqslant 2, \end{aligned}$$

for simultaneously diagonalizable matrices \(A,B\in \mathbb {C}^{N,N}\). The unbounded drift term is defined by a skew-symmetric matrix \(S\in \mathbb {R}^{d,d}\). Differential operators of this form appear when investigating rotating waves in time-dependent reaction diffusion systems. We prove under certain conditions that the maximal domain \(\mathcal {D}(A_p)\) of the generator \(A_p\) belonging to the Ornstein–Uhlenbeck semigroup coincides with the domain of \(\mathcal {L}_{\infty }\) in \(L^p(\mathbb {R}^d,\mathbb {C}^N)\) given by

$$\begin{aligned} \mathcal {D}^p_{\mathrm {loc}}(\mathcal {L}_0)=\left\{ v\in W^{2,p}_{\mathrm {loc}}\cap L^p\mid A\triangle v + \left\langle S\cdot ,\nabla v\right\rangle \in L^p\right\} ,\,1<p<\infty . \end{aligned}$$

One key assumption is a new \(L^p\)-dissipativity condition

$$\begin{aligned} |z|^2\mathrm {Re}\,\left\langle w,Aw\right\rangle + (p-2)\mathrm {Re}\,\left\langle w,z\right\rangle \mathrm {Re}\,\left\langle z,Aw\right\rangle \geqslant \gamma _A |z|^2|w|^2\;\forall \,z,w\in \mathbb {C}^N \end{aligned}$$

for some \(\gamma _A>0\). The proof utilizes the following ingredients. First we show the closedness of \(\mathcal {L}_{\infty }\) in \(L^p\) and derive \(L^p\)-resolvent estimates for \(\mathcal {L}_{\infty }\). Then we prove that the Schwartz space is a core of \(A_p\) and apply an \(L^p\)-solvability result of the resolvent equation for \(A_p\). In addition, we derive \(W^{1,p}\)-resolvent estimates. Our results may be considered as extensions of earlier works by Metafune, Pallara and Vespri to the vector-valued complex case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt, H.W.: Lineare Funktionalanalysis. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Beyn, W.-J., Lorenz, J.: Nonlinear stability of rotating patterns. Dyn. Partial Differ. Equ. 5(4), 349–400 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beyn, W.-J., Otten, D.: Spatial Decay of Rotating Waves in Reaction Diffusion Systems. Preprint. http://arxiv.org/abs/1602.03393, (2016) (submitted)

  4. Cialdea, A.: Criteria for the \(L^p\)-dissipativity of partial differential operators. In: Cialdea, A., Ricci, P., Lanzara, F. (eds.) Analysis, Partial Differential Equations and Applications. Operator Theory: Advances and Applications, vol. 193, pp. 41–56. Birkhuser, Basel (2009)

    Chapter  Google Scholar 

  5. Cialdea, A., Maz’ya, V.: Criterion for the \(L^p\)-dissipativity of second order differential operators with complex coefficients. J. Math. Pures Appl. (9) 84(8), 1067–1100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Da Prato, G., Lunardi, A.: On the Ornstein–Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal. 131(1), 94–114 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000). With contributions by Brendle, S., Campiti, M., Hahn, T., Metafune, G., Nickel, G., Pallara, D., Perazzoli, C., Rhandi, A., Romanelli, S., Schnaubelt, R

    MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2010). [u.a.]

    MATH  Google Scholar 

  9. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI (1968)

    Google Scholar 

  10. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser, Basel (1995)

    MATH  Google Scholar 

  11. Metafune, G.: \(L^p\)-spectrum of Ornstein–Uhlenbeck operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 30(1), 97–124 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Metafune, G., Pallara, D., Vespri, V.: \(L^p\)-estimates for a class of elliptic operators with unbounded coefficients in \(\mathbf{R}^N\). Houston J. Math. 31(2), 605–620 (2005). (electronic)

    MathSciNet  MATH  Google Scholar 

  13. Metafune, G., Pallara, D., Wacker, M.: Feller semigroups on \(R^N\). Semigr. Forum 65(2), 159–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Metafune, G., Prüss, J., Rhandi, A., Schnaubelt, R.: The domain of the Ornstein–Uhlenbeck operator on an \(L^p\)-space with invariant measure. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(2), 471–485 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Mielke, A.: The Ginzburg–Landau equation in its role as a modulation equation. In: Fiedler, B. (ed.) Handbook of Dynamical Systems, pp. 759–834. North-Holland, Amsterdam (2002)

    Google Scholar 

  16. Otten, D.: Spatial decay and spectral properties of rotating waves in parabolic systems. PhD thesis, Bielefeld University (2014). http://www.math.uni-bielefeld.de/~dotten/files/diss/Diss_DennyOtten.pdf. Shaker Verlag, Aachen

  17. Otten, D.: Exponentially weighted resolvent estimates for complex Ornstein–Uhlenbeck systems. J. Evol. Equ. 15(4), 753–799 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Otten, D.: A new \({L}^p\)-Antieigenvalue Condition for Ornstein–Uhlenbeck Operators. Preprint. http://arxiv.org/abs/1510.00864 (2015) (submitted)

  19. Prüss, J., Rhandi, A., Schnaubelt, R.: The domain of elliptic operators on \(L^p(R^d)\) with unbounded drift coefficients. Houston J. Math. 32(2), 563–576 (2006). (electronic)

    MathSciNet  MATH  Google Scholar 

  20. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics, 2nd edn. McGraw-Hill Inc., New York (1991)

    Google Scholar 

  21. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the brownian motion. Phys. Rev. 36, 823–841 (1930)

    Article  MATH  Google Scholar 

  22. Zelik, S., Mielke, A.: Multi-pulse evolution and space–time chaos in dissipative systems. Mem. Am. Math. Soc. 198(925), vi+97 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Ziemer, W.P.: Weakly Differentiable Functions. Graduate Texts in Mathematics. Sobolev Spaces and Functions of Bounded Variation, vol. 120. Springer, New York (1989)

    MATH  Google Scholar 

Download references

Acknowledgments

The author is greatly indebted to Giorgio Metafune, Alessandra Lunardi and Wolf-Jürgen Beyn for extensive discussions which helped in clarifying proofs. I also thank the anonymous referee for valuable suggestions which improved the first version of the paper. Supported by CRC 701 ‘Spectral Structures and Topological Methods in Mathematics’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denny Otten.

Additional information

Communicated by Abdelaziz Rhandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otten, D. The identification problem for complex-valued Ornstein–Uhlenbeck operators in \(L^p(\mathbb {R}^d,\mathbb {C}^N)\) . Semigroup Forum 95, 13–50 (2017). https://doi.org/10.1007/s00233-016-9804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-016-9804-y

Keywords

Navigation