Skip to main content
Log in

Asymptotics for wave equations with Wentzell boundary conditions and boundary damping

  • RESEARCH ARTICLE
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We are concerned with linear wave equations with Wentzell boundary conditions of dynamical type, where only one velocity feedback force acts on the Wentzell boundary. By using the theory of strongly continuous semigroups of linear operators, we prove that the energies of the solutions are strongly stable. Moreover, we show in the one dimensional case that there are solutions decaying at arbitrarily slow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavalcanti, M.M., Cavalcanti, V.N.D., Fukuoka, R., Toundykov, D.: Stabilization of the damped wave equation with Cauchy–Ventcel boundary conditions. J. Evol. Equ. 9, 143–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cavalcanti, M.M., Lasiecka, I., Toundykov, D.: Wave equations with damping affecting ony a subset of stattic wentzell boundary is uniformly stable. Trans. Am. Math. Soc. 364(11), 5693–5713 (2012)

    Article  MATH  Google Scholar 

  3. Coclite, G.M., Goldstein, G.R., Goldstein, J.A.: Stability estimates for nonlinear hyperbolic problems with nonlinear Wentzell boundary conditions. Z. Angew. Math. Phys. 64, 733–753 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coclite, G.M., Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Commun. Pure Appl. Anal. 13, 419–433 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

    MATH  Google Scholar 

  6. Favini, A., Goldstein, G.R., Goldstein, J.A., Obrecht, E., Romanelli, S.: Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem. Math. Nachr. 283, 504–521 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feller, W.: The parabolic differential equations and the associated semi-groups of transformations. Ann. Math. 55(2), 468–519 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hemmina, A.: Stabilization frontière de problèmes de Ventcel. (Boundary stabilization of Ventcel problems). ESAIM Control Optim. Calc. Var. 5, 591–622 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Khemmoudj, A., Medjden, M.: Exponential decay for the semilinear Cauchy–Ventcel problem with localized damping. Bol. Soc. Parana. Math. (3) 22(2), 97–116 (2004)

  10. Lee, E.B., You, Y.C.: Stabilization of a hybrid (string/point mass) system. In: Proceedings of the Fifih International Conference System Engineering Dayton, Ohio (1987)

  11. Lemrabet, K.: Étude de divers problėmes aux limites de Ventcel d’origine physique ou mécanique dans des domaines non réguliers. Thėse, USTHB, Alger (1987)

  12. Lemrabet, K.: Le problème de Ventcel pour le systéme de l’élasticité dans un domaine de \({\rm R}^{3}\). C. R. Acad. Sci. Paris Sér. I Math 304(6), 151–154 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Littman, W., Markus, L.: Stabilization of hybrid system of elasticity by feedback boundary damping. Ann. Math. Pura Appl. 152, 281–330 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Morgul, O., Rao, B., Conrad, F.: On the stabilization of a cable with a tip mass. IEEE Trans. Autom. Control 39(10), 2140–2145 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wentzell, A.D.: On boundary conditions for multi-dimensional diffusion processes. Theor. Probab. Appl. 4, 164–177 (1959)

    Article  MathSciNet  Google Scholar 

  16. Xiao, T.J., Liang, J.: Complete second order differential equations in Banach spaces with dynamic boundary conditions. J. Differ. Equ. 200, 105–136 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xiao, T.J., Liang, J.: Second order differential operators with Feller–Wentzell type boundary conditions. J. Funct. Anal. 254, 1467–1486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xiao, T.J., Liang, J.: Nonautonomous semilinear second order evolution equations with generalized Wentzell boundary conditions. J. Differ. Equ. 252, 3953–3971 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee very much for his/her helpful suggestions. The work was supported partly by the NSF of China (11371095, 11271082), the Shanghai Key Laboratory for Contemporary Applied Mathematics (08DZ2271900), and the Laboratory of Nonlinear Mathematical Modeling and Methods (Ministry of Education).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ti-Jun Xiao.

Additional information

Communicated by Abdelaziz Rhandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xiao, TJ. Asymptotics for wave equations with Wentzell boundary conditions and boundary damping. Semigroup Forum 94, 520–531 (2017). https://doi.org/10.1007/s00233-016-9779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-016-9779-8

Keywords

Navigation