Skip to main content
Log in

Sharp bounds for domain perturbations of Dirichlet Laplacians defined on smooth domains

  • RESEARCH ARTICLE
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We obtain sharp quantitative bounds which describe how an eigenspace of the Dirichlet Laplacian defined on a smooth domain changes when the smooth domain is replaced by a slightly smaller domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarado, R., Brigham, D., Maz’ya, V., Mitrea, M., Ziade, E.: On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-Oleinik boundary point principle. J. Math. Sci. 176, 281–360 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burenkov, V.I., Feleqi, E.: Spectral stability estimates for the eigenfunctions of second order elliptic operators. Math. Nachr. 285, 1357–1369 (2012)

    MATH  MathSciNet  Google Scholar 

  3. Burenkov, V.I., Lamberti, P.D., Lanza de Cristoforis, M.: Spectral stability of nonnegative self-adjoint operators. J. Math. Sci. 149, 1417–1452 (2008)

    Article  MathSciNet  Google Scholar 

  4. Davies, E.B.: Pointwise bounds on the space and time derivatives of heat kernels. J. Oper. Theory 21, 367–378 (1989)

    MATH  Google Scholar 

  5. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  6. Davies, E.B., Pang, M.M.H.: The eigenvalue gap for second order elliptic operators with Dirichlet boundary conditions. J. Differ. Equa. 88, 46–70 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davies, E.B., Simon, B.: Ultracontractivity and the heat kernel for Schrodinger operators and Dirichlet Laplacians. J. Funct. Anal. 59, 335–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pang, M.M.H.: Approximation of ground state eigenvalues and eigenfunctions of Dirichlet Laplacians. Bull. Lond. Math. Soc. 29, 720–730 (1997)

    Article  MATH  Google Scholar 

  9. Pang, M.M.H.: Stability and approximations of eigenvalues and eigenfunctions for the Neumann Laplacian, Part 2. J. Math. Anal. Appl. 345, 485–499 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pang, M.M.H.: Stability and approximations of eigenvalues and eigenfunctions for the Neumann Laplacian, Part 3. Electron. J. Diff. Equa. 100, 1–54 (2011)

    Google Scholar 

  11. Pang, M.M.H.: On an upper heat kernel bound for second order elliptic operators on bounded regions in \(\mathbb{R}^N\). Oper. Matrices (2014, accepted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. H. Pang.

Additional information

Communicated by Jerome A. Goldstein.

Appendix

Appendix

In [11], \(H \geqslant 0\) is a second order uniformly elliptic operator in divergence form defined on a domain \(\Omega \subseteq \mathbb {R}^N, N \geqslant 3,\) with Dirichlet boundary conditions. Let \(E_1 > 0\) be the ground state eigenvalue of \(H\), \(\phi _1 > 0\) be the ground state eigenfunction of \(H\), normalized so that \(\left\| \phi _1\right\| _{L^2(\Omega )} = 1\), and let \(K(t, x, y)\) be the heat kernel of \(e^{-Ht}\). It is assumed in [11] that (i) there exist \(0 < \lambda \leqslant \Lambda < \infty \) such that

$$\begin{aligned} -\lambda \Delta _{\Omega } \leqslant H \leqslant -\Lambda \Delta _{\Omega }, \end{aligned}$$

where \(-\Delta _{\Omega } \geqslant 0\) denotes the Dirichlet Laplacian defined on \(\Omega \), that (ii) there exists \(c_1 = c_1(\Omega ) \geqslant 1\) such that \(\Omega \) satisfies a strong Hardy’s inequality of the form

$$\begin{aligned} \int _{\Omega } \frac{\left| f (x) \right| ^2}{{d_{\Omega }(x)}^2} \,\, dx \le c_1 \int _{\Omega } \left| \nabla f\right| ^2 \,\,dx \qquad \qquad (f \in C^{\infty }_{c}(\Omega )), \end{aligned}$$

and that (iii) there exist \(a \geqslant 1\) and \(b > 0\) such that \(\phi _1\) satisfies an inequality of the form

$$\begin{aligned} \phi _1(x) \geqslant b{d_{\Omega }(x)}^a \qquad \qquad (x \in \Omega ). \end{aligned}$$

Then [11, Theorem 16] asserts that there exists \(c_{2}=c_{2}(\Omega ) \geqslant 1\) such that if we put

$$\begin{aligned} \Gamma =&\,\,\Gamma (\Omega , a, b, \lambda , \Lambda , E_1)\\ =&\,\, \max \left\{ c_{2} e^{c_{2} a\log a}\lambda ^{-(\frac{N}{2}+a)}b^{-2}e^{E_1}, (c_{2}e^{c_{2} a\log a} \lambda ^{-(\frac{N}{2}+a)}2^{\frac{N}{2}+a}b^{-2})^2\right. \\&\,\, \left. \times \exp \left\{ E_1 + \frac{diam(\Omega )^2}{8\Lambda }\right\} , 1\right\} \\ \geqslant&\,\,1, \end{aligned}$$

then we have

$$\begin{aligned} 0 \leqslant&\,\,K(t,x,y)\nonumber \\ \leqslant&\,\,\Gamma \max \{t^{-(\frac{N}{2}+a)}, 1\}e^{-E_1 t} \exp \left\{ {-\frac{\left| {x-y}\right| ^2}{8\Lambda t}}\right\} \phi _1(x)\phi _1(y) \end{aligned}$$
(145)

for all \(t>0\) and all \(x,y\in \Omega .\)

In the main body of this paper if \(\Omega \) is a bounded \(C^{1,1}\) domain in \(\mathbb {R}^N\), \(N \geqslant 3\), and \(H=-\Delta _{\Omega },\) then it is well known that the assumptions in [11] are satisfied and we can put \(\lambda =\Lambda =a=1\) in (145). Noting in this case that \(b\) and \(E_1 = \mu _1[\Omega ]\) both depend only on \(\Omega \), we get the upper heat kernel bound, in the notations of the main body of this paper,

$$\begin{aligned} K_{\Omega }(t, x, y) \leqslant c(\Omega ) \max \{t^{-(\frac{N}{2}+1)}, 1\}e^{-\mu _1[\Omega ] t} \exp \left\{ {-\frac{\left| {x-y}\right| ^2}{8 t}}\right\} \varphi _1[\Omega ](x)\varphi _1[\Omega ](y) \end{aligned}$$
(146)

for some \(c(\Omega )\geqslant 1\). Clearly (146) implies that for all \(0 < \delta < 1\) we have

$$\begin{aligned} K_{\Omega }(t, x, y)\leqslant c(\Omega , \delta ) t^{-(\frac{N}{2}+1)}e^{-\mu _1[\Omega ] (1-\delta )t} \exp \left\{ {-\frac{\left| {x-y}\right| ^2}{8 t}}\right\} \varphi _1[\Omega ](x)\varphi _1[\Omega ](y) \end{aligned}$$
(147)

for some \(c(\Omega , \delta ) \geqslant 1\). If we fix \(\delta = 1/3\), then we get the bound (2) in this paper.

Suppose next that \(\Omega \) is a \(C^{1, 1}\) bounded domain in \(\mathbb {R}^2\), then, as mentioned in [6], we consider \(\Omega \times \Omega \subseteq \mathbb {R}^4\). Recall that a domain \(D \subseteq \mathbb {R}^N\), \(N \geqslant 2,\) is said to satisfy a uniform external ball condition with parameters \(\alpha > 0\) and \(\beta > 0\) if for any \(y \in \partial \Omega \) and \( 0 < s < \beta \) there exists a ball \(B_{p, r} \) with center \(p\) satisfying \(\left| p - y\right| \leqslant s\), and radius \(r\) satisfying \(r \geqslant 2\alpha s\), which does not meet \(D\). This condition holds if \(\partial D\) satisfies a uniform Lipschitz condition. It is easy to check that if \(D \subseteq \mathbb {R}^N, N \geqslant 2,\) satisfies a uniform exterior ball condition with parameters \(\alpha \) and \(\beta \), then \(D \times D \subseteq \mathbb {R}^{2N}\) satisfies a uniform exterior ball condition with parameter \(\alpha /\sqrt{2}\) and \(\beta \). By [5, Theorem 1.5.5.], a domain \(D\subseteq \mathbb {R}^N, N \geqslant 2,\) that satisfies a uniform external ball condition and has finite inradius, i.e.,

$$\begin{aligned} Inr(D) = sup\{d_{\Omega }(x): x \in D\} < \infty , \end{aligned}$$

automatically satisfies a strong Hardy’s inequality. Applying these to \(\Omega \) we see that \(\Omega \times \Omega \subseteq \mathbb {R}^4\) satisfies a strong Hardy’s inequality. Moreover, since

$$\begin{aligned}\varphi _1[\Omega \times \Omega ](x_1, x_2) = \varphi _1[\Omega ](x_1)\varphi [\Omega ](x_2) \qquad \qquad (x_1, x_2 \in \Omega ),\end{aligned}$$

we have, by (1),

$$\begin{aligned}\varphi _1[\Omega \times \Omega ](x_1, x_2) \geqslant c_1^{-2}d_{\Omega }(x_1)d_{\Omega }(x_2) \geqslant c_1^{-2}d_{\Omega \times \Omega }(x_1, x_2)^{2}\qquad \qquad (x_1, x_2 \in \Omega ).\end{aligned}$$

for some \(c_1=c_1(\Omega ) \geqslant 1.\) So \(-\Delta _{\Omega \times \Omega }\) satisfies all the assumptions in [11] and we can apply the bound (145) to it with \(\lambda = \Lambda = 1, a=2\), \(b=b(\Omega ) = c_1(\Omega )^{-2}\) and \(E_1 = E_1(\Omega ) = 2\mu _1[\Omega ] .\) So we get

$$\begin{aligned}&K_{\Omega \times \Omega }(t, (x_1, x_2), (y_1, y_2))\nonumber \\&\quad \leqslant c(\Omega )\max \{t^{-4}, 1\}e^{-2\mu _1[\Omega ] t} \exp \left\{ {-\frac{\left| {x_1-y_1}\right| ^2+\left| {x_2 - y_2}\right| ^2}{8 t}}\right\} \nonumber \\&\quad \times \varphi _1[\Omega \times \Omega ](x_1, x_2)\varphi _1[\Omega \times \Omega ](y_1, y_2)\qquad \qquad (x_1, x_2, y_1, y_2 \in \Omega ) \end{aligned}$$
(148)

for some \(c(\Omega ) \geqslant 1\). Since for all \(x_1, x_2, y_1, y_2 \in \Omega \) we have

$$\begin{aligned} K_{\Omega \times \Omega }(t, (x_1, x_2), (y_1, y_2)) = K_{\Omega }(t, x_1, y_1)\,K_{\Omega }(t, x_2, y_2), \end{aligned}$$
(149)

(148) implies that (146), and hence (147), hold also if \(N = 2\). Hence (2) holds also if \(\Omega \subseteq \mathbb {R}^2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, M.M.H. Sharp bounds for domain perturbations of Dirichlet Laplacians defined on smooth domains. Semigroup Forum 90, 1–52 (2015). https://doi.org/10.1007/s00233-014-9665-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-014-9665-1

Keyword

Navigation