Skip to main content

Advertisement

Log in

LPS-Induced Macrophage Activation and Plasma Membrane Fluidity Changes are Inhibited Under Oxidative Stress

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Macrophage activation is essential for a correct and efficient response of innate immunity. During oxidative stress membrane receptors and/or membrane lipid dynamics can be altered, leading to dysfunctional cell responses. Our aim is to analyze membrane fluidity modifications and cell function under oxidative stress in LPS-activated macrophages. Membrane fluidity of individual living THP-1 macrophages was evaluated by the technique two-photon microscopy. LPS-activated macrophage function was determined by TNFα secretion. It was shown that LPS activation causes fluidification of macrophage plasma membrane and production of TNFα. However, oxidative stress induces rigidification of macrophage plasma membrane and inhibition of cell activation, which is evidenced by a decrease of TNFα secretion. Thus, under oxidative conditions macrophage proinflammatory response might develop in an inefficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BCR:

B cell receptor

CD14:

Cluster of differentiation 14

DMSO:

Dimethylsulphoxide

FBS:

Fetal bovine serum

GP:

Generalized polarization

l d :

Liquid disordered

l o :

Liquid ordered

LBP:

Lipopolysaccharide binding protein

LPS:

Lipopolysaccharides

MD-2:

Myeloid differentiation factor 2

OS:

Oxidative stress

PMA:

Phorbol-12-myristate-13-acetate

THP-1:

Human acute monocytic leukemia cell line

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor alpha

References

  • Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL (2009) Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem 284:27438–27448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagatolli LA (2006) To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758:1541–1556

    Article  CAS  PubMed  Google Scholar 

  • Bagatolli LA, Gratton E (1999) Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. Biophys J 77:2090–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagatolli LA, Gratton E (2000) Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J 78:290–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagatolli LA, Parasassi T, Gratton E (2000) Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods: a two photon fluorescence microscopy study. Chem Phys Lipids 105:135–147

    Article  CAS  PubMed  Google Scholar 

  • Bagatolli LA, Sanchez SA, Hazlett T, Gratton E (2003) Giant vesicles, Laurdan, and two-photon fluorescence microscopy: evidence of lipid lateral separation in bilayers. Methods Enzymol 360:481–500

    Article  CAS  PubMed  Google Scholar 

  • Banday AA, Fazili FR, Lokhandwala MF (2007) Oxidative stress causes renal dopamine D1 receptor dysfunction and hypertension via mechanisms that involve NF-kB and protein kinase C. J Am Soc Nephrol 18:1446–1457

    Article  CAS  PubMed  Google Scholar 

  • Betteridge DJ (2000) What is oxidative stress. Metabolism 49:3–8

    Article  CAS  PubMed  Google Scholar 

  • Bochkov VN, Oskolkova OV, Birukov KG, Levonen AS, Binder CJ, Stöckl J (2010) Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12:1009–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaventura G, Barcellona ML, Golfetto O, Nourse JL, Flanagan LA, Gratton E (2014) Laurdan monitors different lipids content in eukaryotic membrane during embryonic neural development. Cell Biochem Biophys 70:785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalá A (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids 157:1–11

    Article  CAS  PubMed  Google Scholar 

  • Casanova J, Abel L, Quintat-Murci L (2015) Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 29:447–491

    Article  CAS  Google Scholar 

  • Celli A, Gratton E (2010) Dynamics of lipid domain formation: fluctuation analysis. Biochim Biophys Acta 1798:1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Conte E, Megli FM, Khandelia H, Jeschke G, Bordignon E (2013) Lipid peroxidation and water penetration in lipid bilayers: a W-band EPR study. Biochem Biophys Acta 1828:510–517

    Article  CAS  PubMed  Google Scholar 

  • Coskun U, Simons K (2010) Membrane rafting: from apical sorting to phase segregation. FEBS Lett 584:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Coskun U, Simons K (2011) Cell membranes: the lipid perspective. Structure 19:1543–1548

    Article  CAS  PubMed  Google Scholar 

  • Cuschieri J, Mayer RV (2007) Oxidative stress, lipid rafts and macrophage reprogramming. Antioxid Redox Signal 9:1485–1497

    Article  CAS  PubMed  Google Scholar 

  • Cuschieri J, Billigren J, Maier RV (2006) Endotoxin tolerance attenuates LPS-induced TLR4 mobilization to lipid rafts: a condition reversed by PKC activation. J Leukoc Biol 80:1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Cuschieri J, Sakr S, Bulger E, Knoll M, Arbabi S, Maier RV (2009) Oxidant alterations in CD16 expression are cytoskeletal induced. Shock 32:572–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Andrade KQ, Moura FA, Dos Santos JM, de Araújo OR, de Farias Santos JC, Goulart M (2015) Oxidative stress and inflammation in hepatic diseases: therapeutic possibilities of N-acetylcysteine. Int J Mol Sci 16(12):30269–30308

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Haba C, Palacio JR, Martinez P, Morros A (2013) Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages. Biochim Biophys Acta 1828:357–364

    Article  CAS  PubMed  Google Scholar 

  • de la Haba C, Palacio JR, Palkovics T, Szekeres-Bartho J, Morros A, Martinez P (2014) Oxidative stress effect on progesterone-induced blocking factor (PIBF) binding to PIBF-receptor in lymphocytes. Biochim Biophys Acta 1838:148–157

    Article  CAS  PubMed  Google Scholar 

  • Denu JM, Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37:5633–5642

    Article  CAS  PubMed  Google Scholar 

  • Dykstra ML, Cherukuri A, Pierce SK (2001) Floating the raft hypothesis for immune receptors: access to rafts controls receptor signaling and trafficking. Traffic 2:160–166

    Article  CAS  PubMed  Google Scholar 

  • Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21:457–481

    Article  CAS  PubMed  Google Scholar 

  • Filosto S, Khan EM, Tognon E, Becker C, Ashfaq M, Ravid T, Goldkorn T (2011) EGF receptor exposed to oxidative stress acquires abnormal phosphorylation and aberrant activated conformation that impairs canonical dimerization. PLoS One 6:e23240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100:15554–15559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaus K, Chklovskaia E, de St Fazekas BF, Groth B, Jessup W, Harder T (2005) Condensation of the plasma membrane at the site of T lymphocyte activation. J Cell Biol 171:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaus K, Le Lay S, Balasubramanian N, Schwartz MA (2006a) Integrin-mediated adhesion regulates membrane order. J Cell Biol 174:725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaus K, Zech T, Harder T (2006b) Visualizing membrane microdomains by Laurdan 2-photon microscopy. Mol Membr Biol 23:41–48

    Article  CAS  PubMed  Google Scholar 

  • Guan ZZ (2008) Cross-talk between oxidative stress and modifications of cholinergic and glutaminergic receptors in the pathogenesis of Alzheimer’s disease. Acta Pharmacol Sin 29:773–780

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Harder T, Sangani D (2009) Plasma membrane rafts engaged in T cell signalling: new developments in an old concept. Cell Commun Signal 7:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harder T, Rentero C, Zech T, Gaus K (2007) Plasma membrane segregation during T cell activation: probing the order of domains. Curr Opin Immunol 19:470–475

    Article  CAS  PubMed  Google Scholar 

  • He Y, Leung KW, Ren Y, Pei J, Ge J, Tombran-Tink J (2014) PEDF improves mitochondrial function in RPE cells during oxidative stress. Invest Ophthalmol Vis Sci 55:6742–6755

    Article  CAS  PubMed  Google Scholar 

  • Head BP, Patel HH, Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838:532–545

    Article  CAS  PubMed  Google Scholar 

  • Howell JI, Ahkong QF, Cramp FC, Fisher D, Tampion W, Lucy JA (1972) Membrane fluidity and membrane fusion. Biochem J 130:44

    Article  Google Scholar 

  • Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14

    Article  CAS  PubMed  Google Scholar 

  • Kinnunen P, Hermetter A, Spickett CM (2012) Oxidized phospholipids—their properties and interactions with proteins. Biochim Biophys Acta 1818:2373–2476

    Article  CAS  PubMed  Google Scholar 

  • Kiyoshima T, Enoki N, Kobayashi I, Sakai T, Nagata K, Wada H, Fujiwara H, Ookuma Y, Sakai H (2012) Oxidative stress caused by a low concentration of hydrogen peroxide induces senescence-like changes in mouse gingival fibroblasts. Int J Mol Med 30:1007–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34

    Article  CAS  PubMed  Google Scholar 

  • Kusumi A, Koyama-Honda I, Suzuki K (2004) Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5:213–230

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberg D, Pinchuk I (2015) Oxidative stress, the term and the concept. Biochem Biophys Res Commun 461:441–444

    Article  CAS  PubMed  Google Scholar 

  • Mills CD (2015) Anatomy of a discovery: M1 and M2 macrophages. Front Immunol. doi:10.3389/fimmu.2015.00212

    Google Scholar 

  • Mishra S, Joshi PG (2007) Lipid raft heterogeneity: an enigma. J Neurochem 103:135–142

    Article  CAS  PubMed  Google Scholar 

  • Morris G, Walder K, Puri BK, Berk M, Maes M (2015) The deleterious effects of oxidative and nitrosative stress on palmitoylation, membrane lipid rafts and lipid-based cellular signalling: new drug targets in neuroimmune disorders. Mol Neurobiol. doi:10.1007/s12035-015-9392-y

    Google Scholar 

  • Nakao N, Kurokawa T, Nonami T, Tumurkhuu G, Koide N, Yokochi T (2008) Hydrogen peroxide induces the production of tumor necrosis factor-alpha in RAW 264.7 macrophage cells via activation of p38 and stress-activated protein kinase. Innate Immun 14:190–196

    Article  CAS  PubMed  Google Scholar 

  • Palacio JR, Markert U, Martınez P (2011) Anti-inflammatory properties of N-acetylcysteine on lipopolysaccharide-activated macrophages. Inflamm Res 60:695–704

    Article  CAS  PubMed  Google Scholar 

  • Parasassi T, Gratton E, Yu WN, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BS, Lee JO (2013) Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 45:e66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce SK (2002) Lipid rafts and B-cell activation. Nat Rev Immunol 2:96–105

    Article  CAS  PubMed  Google Scholar 

  • Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50:323–328

    Article  CAS  Google Scholar 

  • Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74

    Article  CAS  PubMed  Google Scholar 

  • Piwien-Pilipuk G, Ayala A, Machado A, Galigniana MD (2002) Impairment of mineralocorticoid receptor (MR)-dependent biological response by oxidative stress and aging: correlation with post-translational modification of MR and decreased ADP-ribosylatable level of elongating factor 2 in kidney cells. J Biol Chem 277:11896–11903

    Article  CAS  PubMed  Google Scholar 

  • Prives J, Shinitzky M (1977) Increased membrane fluidity precedes fusion of muscle cells. Nature 268:761–763

    Article  CAS  PubMed  Google Scholar 

  • Reis A, Spickett CM (2012) Chemistry of phospholipid oxidation. Biochim Biophys Acta 1818:2374–2387

    Article  CAS  PubMed  Google Scholar 

  • Saeki K, Miura Y, Aki D, Kurosaki T, Yoshimura A (2003) The B cell-specific major raft protein, Raftlin, is necessary for the integrity of lipid raft and BCR signal transduction. EMBO J 22:3015–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzano S, Checconi P, Hanschmann EM, Lillig CH, Bowler LD, Chan P, Vaudry D, Mengozzi M, Coppo L, Sacre S, Atkuri KR, Sahaf B, Herzenberg LA, Herzenberg LA, Mullen L, Ghezzi P (2014) Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci USA 111:12157–12162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez SA, Tricerri MA, Gratton E (2012) Laurdan generalized polarization fluctuations measures membrane packing micro-heterogeneity in vivo. Proc Natl Acad Sci USA 109:7314–7319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaur RJ, Siems W, Bresgen N, Eckl PM (2015) 4-Hydroxy-nonenal—a bioactive lipid peroxidation product. Biomolecules 5:2247–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt C, Kim D, Ippolito G, Naqvi H, Probst L, Mathur S, Rosas-Acosta G, Wilson V, Oldham A, Poenie M, Webb C, Tucker P (2009) Signaling of the BCR is regulated by a lipid rafts-localised transcription factor, Bright. EMBO J 18:711–724

    Article  CAS  Google Scholar 

  • Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28:1387–1404

    Article  CAS  PubMed  Google Scholar 

  • Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spickett CM, Pitt AR (2015) Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid Redox Signal 22:1646–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strassheim D, Asehnoune K, Park JS, Kim JY, He Q, Richter D, Mitra S, Arcaroli J, Kuhn K, Abraham E (2004) Modulation of bone marrow-derived neutrophil signaling by H2O2: disparate effects on kinases, NF-kappaB, and cytokine expression. Am J Physiol Cell Physiol 286:683–692

    Article  Google Scholar 

  • Tan Y, Kagan JC (2014) A cross-disciplinary perspective on the innate immune responses to bacterial lipopolysaccharide. Mol Cell 54:212–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokudome Y, Saito Y, Sato F, Kikuchi M, Hinokitani T, Goto K (2009) Preparation and characterization of ceramide-based liposomes with high fusion activity and high membrane fluidity. Colloids Surf B Biointerfaces 73:92–96

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou M, Triantafilou K (2005) The dynamics of LPS recognition: complex orchestration of multiple receptors. J Endotox Res 11:5–11

    CAS  Google Scholar 

  • Triantafilou K, Triantafilou M, Dedrick RL (2001) A CD14-independent LPS receptor cluster. Nat Immunol 2:338–345

    Article  CAS  PubMed  Google Scholar 

  • Triantafilou M, Miyake K, Golenbock DT, Triantafilou K (2002) Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115:2603–2611

    CAS  PubMed  Google Scholar 

  • Triantafilou M, Lepper PM, Olden R, Rodrigues Dias IS, Triantafilou K (2011) Location, location, location: is membrane partitioning everything when it comes to innate immune activation? Mediat Inflamm 2011:1–10

    Article  CAS  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volinsky R, Kinnunen PKJ (2013) Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology. FEBS J 280:2806–2816

    Article  CAS  PubMed  Google Scholar 

  • Weismann D, Binder CJ (2012) The innate immune response to products of phospholipid peroxidation. Biochem Biophys Acta 1818:2465–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilschut J, Duzgunes N, Hoekstra D, Papahadjopoulos D (1985) Modulation of membrane fusion by membrane fluidity: temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Biochemistry 24:8–14

    Article  CAS  PubMed  Google Scholar 

  • Wong SW, Kwon MJ, Choi AM, Kim HP, Nakahira K, Hwang DH (2009) Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem 284:27384–27392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Tanaka J, Tamura J, Fujita K, Kasamatsu T, Kohmoto M, Kaido T (1995) Significance of altered fluidity of plasma membranes of the liver and kidney in rats with sepsis. J Surg Res 58:131–136

    Article  CAS  PubMed  Google Scholar 

  • Yu W, So PT, French T, Gratton E (1996) Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. Biophys J 70:626–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zmijewski JW, Zhao X, Xu Z, Abraham E (2007) Exposure to hydrogen peroxide diminishes NF-kappaB activation, IkappaB-alpha degradation, and proteasome activity in neutrophils. Am J Physiol Cell Physiol 293:255–266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Servei de Microscòpia from the Universitat Autònoma de Barcelona (UAB). C. de la Haba was funded with a pre-doctoral fellowship from the UAB. This work was supported by a grant from the Network of Excellence LSHM-CT-2004-512040 (EMBIC) to P. Martinez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Palacio.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Haba, C., Morros, A., Martínez, P. et al. LPS-Induced Macrophage Activation and Plasma Membrane Fluidity Changes are Inhibited Under Oxidative Stress. J Membrane Biol 249, 789–800 (2016). https://doi.org/10.1007/s00232-016-9927-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9927-9

Keywords

Navigation