Skip to main content
Log in

Nanometer-Scale Permeabilization and Osmotic Swelling Induced by 5-ns Pulsed Electric Fields

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

High-intensity nanosecond pulsed electric fields (nsPEFs) permeabilize cell membranes. Although progress has been made toward an understanding of the mechanism of nsPEF-induced membrane poration, the dependence of pore size and distribution on pulse duration, strength, number, and repetition rate remains poorly defined experimentally. In this paper, we characterize the size of nsPEF-induced pores in living cell membranes by isosmotically replacing the solutes in pulsing media with polyethylene glycols and sugars before exposing Jurkat T lymphoblasts to 5 ns, 10 MV/m electric pulses. Pore size was evaluated by analyzing cell volume changes resulting from the permeation of osmolytes through the plasma membrane. We find that pores created by 5 ns pulses have a diameter between 0.7 and 0.9 nm at pulse counts up to 100 with a repetition rate of 1 kHz. For larger number of pulses, either the pore diameter or the number of pores created, or both, increase with increasing pulse counts. But the prevention of cell swelling by PEG 1000 even after 2000 pulses suggests that 5 ns, 10 MV/m pulses cannot produce pores with a diameter larger than 1.9 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • André FM, Rassokhin MA, Bowman AM, Pakhomov AG (2010) Gadolinium blocks membrane permeabilization induced by nanosecond electric pulses and reduces cell death. Bioelectrochemistry 79:95–100

    Article  PubMed  Google Scholar 

  • Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC (2004) The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J 87:4259–4270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beebe SJ, Blackmore PF, White J, Joshi RP, Schoenbach KH (2004) Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol Meas 25:1077

    Article  PubMed  Google Scholar 

  • Bilska AO, DeBruin KA, Krassowska W (2000) Theoretical modeling of the effects of shock duration, frequency, and strength on the degree of electroporation. Bioelectrochemistry 51:133–143

    Article  CAS  PubMed  Google Scholar 

  • Bowman A, Nesin O, Pakhomova O, Pakhomov A (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl + uptake. J Membr Biol 236:15–26. doi:10.1007/s00232-010-9269-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claessens M, Leermakers FAM, Hoekstra FA, Stuart MAC (2008) Osmotic shrinkage and reswelling of giant vesicles composed of dioleoylphosphatidylglycerol and cholesterol. Biochim Biophys Acta Biomembr 1778:890–895

    Article  CAS  Google Scholar 

  • Craviso GL, Chatterjee P, Maalouf G, Cerjanic A, Yoon J, Chatterjee I, Vernier PT (2009) Nanosecond electric pulse-induced increase in intracellular calcium in adrenal chromaffin cells triggers calcium-dependent catecholamine release. Dielectr Electr Insul IEEE Trans 16:1294–1301

    Article  CAS  Google Scholar 

  • DeBruin KA, Krassowska W (1999) Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 77:1213–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garon EB, Sawcer D, Vernier PT, Tang T, Sun Y, Marcu L, Gundersen MA, Koeffler HP (2007) In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer 121:675–682. doi:10.1002/ijc.22723

    Article  CAS  PubMed  Google Scholar 

  • Golzio M, Mora M-P, Raynaud C, Delteil C, Teissié J, Rols M-P (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74:3015–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinosita K Jr, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–441

    Article  PubMed  Google Scholar 

  • Kuga S (1981) Pore size distribution analysis of gel substances by size exclusion chromatography. J Chromatogr A 206:449–461

    Article  CAS  Google Scholar 

  • Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236:27–36. doi:10.1007/s00232-010-9277-y

    Article  CAS  PubMed  Google Scholar 

  • Napotnik TB, Wu Y-H, Gundersen MA, Miklavcic D, Vernier PT (2012) Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 33:257–264. doi:10.1002/bem.20707

    Article  CAS  Google Scholar 

  • Nesin OM, Pakhomova ON, Xiao S, Pakhomov AG (2011) Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60-and 600-ns electric pulses. Biochim Biophys Acta Biomembr 1808:792–801

    Article  CAS  Google Scholar 

  • Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, Ren W, Osgood C, Swanson RJ, Kolb JF (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125:438–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385:181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pakhomov AG, Gianulis E, Vernier PT, Semenov I, Xiao S, Pakhomova ON (2015) Multiple nanosecond electric pulses increase the number but not the size of long-lived nanopores in the cell membrane. Biochim Biophys Acta 1848:958–966. doi:10.1016/j.bbamem.2014.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers WR, Merritt JH, Comeaux J, Kuhnel CT, Moreland DF, Teltschik DG, Lucas JH, Murphy AR (2004) Strength-duration curve for an electrically excitable tissue extended down to near 1 nanosecond. Plasma Sci IEEE Trans 32:1587–1599

    Article  Google Scholar 

  • Romeo S, Wu Y-H, Levine ZA, Gundersen MA, Vernier PT (2013) Water influx and cell swelling after nanosecond electropermeabilization. Biochim Biophys Acta 1828:1715–1722. doi:10.1016/j.bbamem.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  • Rubinsky B (2007) Irreversible electroporation in medicine. Technol Cancer Res Treat 6:255–259

    Article  PubMed  Google Scholar 

  • Sabirov RZ, Okada Y (2004) Wide nanoscopic pore of maxi-anion channel suits its function as an ATP-conductive pathway. Biophys J 87:1672–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders JM, Kuthi A, Wu Y-H, Vernier PT, Gundersen M (2009) A linear, single-stage, nanosecond pulse generator for delivering intense electric fields to biological loads. Dielectr Electr Insul IEEE Trans 16:1048–1054

    Article  Google Scholar 

  • Saulis G, Venslauskas MS, Naktinis J (1991) Kinetics of pore resealing in cell membranes after electroporation. Bioelectrochemistry Bioenerg 26:1–13

    Article  Google Scholar 

  • Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov A, Stacey M, Swanson RJ, White J (2007) Bioelectric effects of intense nanosecond pulses. Dielectr Electr Insul IEEE Trans 14:1088–1109

    Article  CAS  Google Scholar 

  • Smith KC, Weaver JC (2011) Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses. Biochem Biophys Res Commun 412:8–12. doi:10.1016/j.bbrc.2011.06.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son RS, Gowrishankar TR, Smith KC, Weaver JC (2016) Modeling a conventional electroporation pulse train: decreased pore number, cumulative calcium transport and an example of electrosensitization. IEEE Trans Biomed Eng 63:571–580

    Article  PubMed  Google Scholar 

  • Sukhorukov VL, Imes D, Woellhaf MW, Andronic J, Kiesel M, Shirakashi R, Zimmermann U, Zimmermann H (2009) Pore size of swelling-activated channels for organic osmolytes in Jurkat lymphocytes, probed by differential polymer exclusion. Biochim Biophys Acta Biomembr 1788:1841–1850

    Article  CAS  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295

    Article  CAS  PubMed  Google Scholar 

  • Vernier PT, Sun Y, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37. doi:10.1186/1471-2121-7-37

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y-H, Arnaud-Cormos D, Casciola M, Sanders JM, Leveque P, Vernier PT (2013) Moveable wire electrode microchamber for nanosecond pulsed electric-field delivery. IEEE Trans Biomed Eng 60:489–496. doi:10.1109/TBME.2012.2228650

    Article  PubMed  Google Scholar 

  • Zhang J, Blackmore PF, Hargrave BY, Xiao S, Beebe SJ, Schoenbach KH (2008) Nanosecond pulse electric field (nanopulse): a novel non-ligand agonist for platelet activation. Arch Biochem Biophys 471:240–248

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U (1982) Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta Rev Biomembr 694:227–277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

EBS and PTV received support from the Frank Reidy Research Center for Bioelectrics at Old Dominion University and from the Air Force Office of Scientific Research (FA9550-15-1-0517, FA9550-14-1-0123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esin B. Sözer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sözer, E.B., Wu, YH., Romeo, S. et al. Nanometer-Scale Permeabilization and Osmotic Swelling Induced by 5-ns Pulsed Electric Fields. J Membrane Biol 250, 21–30 (2017). https://doi.org/10.1007/s00232-016-9918-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9918-x

Keywords

Navigation