Skip to main content
Log in

Dependence of Electroporation Detection Threshold on Cell Radius: An Explanation to Observations Non Compatible with Schwan’s Equation Model

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

It is widely accepted that electroporation occurs when the cell transmembrane voltage induced by an external applied electric field reaches a threshold. Under this assumption, in order to trigger electroporation in a spherical cell, Schwan’s equation leads to an inversely proportional relationship between the cell radius and the minimum magnitude of the applied electric field. And, indeed, several publications report experimental evidences of an inverse relationship between the cell size and the field required to achieve electroporation. However, this dependence is not always observed or is not as steep as predicted by Schwan’s equation. The present numerical study attempts to explain these observations that do not fit Schwan’s equation on the basis of the interplay between cell membrane conductivity, permeability, and transmembrane voltage. For that, a single cell in suspension was modeled and the electric field necessary to achieve electroporation with a single pulse was determined according to two effectiveness criteria: a specific permeabilization level, understood as the relative area occupied by the pores during the pulse, and a final intracellular concentration of a molecule due to uptake by diffusion after the pulse, during membrane resealing. The results indicate that plausible model parameters can lead to divergent dependencies of the electric field threshold on the cell radius. These divergent dependencies were obtained through both criteria and using two different permeabilization models. This suggests that the interplay between cell membrane conductivity, permeability, and transmembrane voltage might be the cause of results which are noncompatible with the Schwan’s equation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal A, Zudans I, Weber EA, Olofsson J, Orwar O, Weber SG (2007) Effect of cell size and shape on single-cell electroporation. Anal Chem 79:3589–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benz R, Zimmermann U (1980) 376-Relaxation studies on cell membranes and lipid bilayers in the high electric field range. Bioelectrochem Bioenerg 7:723–739

    Article  CAS  Google Scholar 

  • Benz R, Zimmermann U (1981) The resealing process of lipid bilayers after reversible electrical breakdown. Biochim Biophys Acta 640:169–178

    Article  CAS  PubMed  Google Scholar 

  • Ĉemazâr M, Jarm T, Miklavĉiĉ D, Lebar AM, Ihan A, Kopitar NA, Serŝa G (1998) Effect of electric-field intensity on electropermeabilization and electrosensitmty of various tumor-cell lines in vitro. Electro Magnetobiol 17:263–272

    Article  Google Scholar 

  • Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14

    Article  CAS  PubMed  Google Scholar 

  • DeBruin KA, Krassowska W (1999) Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 77:1213–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delemotte L, Tarek M (2012) Molecular dynamics simulations of lipid membrane electroporation. J Membr Biol 245:531–543

    Article  CAS  PubMed  Google Scholar 

  • Demiryurek Y, Nickaeen M, Zheng M, Yu M, Zahn JD, Shreiber DI, Lin H, Shan JW (2015) Transport, resealing, and re-poration dynamics of two-pulse electroporation-mediated molecular delivery. Biochim Biophys Acta Biomembr 1848:1706–1714

    Article  CAS  Google Scholar 

  • Djuzenova CS, Sukhorukov VL, Klöck G, Arnold WM, Zimmermann U (1994) Effect of electric field pulses on the viability and on the membrane-bound immunoglobulins of LPS-activated murine B-lymphocytes: correlation with the cell cycle. Cytometry 15:35–45

    Article  CAS  PubMed  Google Scholar 

  • Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel B, Teissié J (1999) Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophys J 76:2158–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gendron P-O, Avaltroni F, Wilkinson KJ (2008) Diffusion coefficients of several rhodamine derivatives as determined by pulsed field gradient-nuclear magnetic resonance and fluorescence correlation spectroscopy. J Fluoresc 18:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Gimsa J, Müller T, Schnelle T, Fuhr G (1996) Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm. Biophys J 71:495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  CAS  PubMed  Google Scholar 

  • Golzio M, Teissié J, Rols M-P (2002) Cell synchronization effect on mammalian cell permeabilization and gene delivery by electric field. Biochim Biophys Acta Biomembr 1563:23–28

    Article  CAS  Google Scholar 

  • He H, Chang DC, Lee YK (2007) Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells. Bioelectrochemistry 70:363–368

    Article  CAS  PubMed  Google Scholar 

  • Henslee BE, Morss A, Hu X, Lafyatis GP, Lee LJ (2011) Electroporation dependence on cell size: optical tweezers study. Anal Chem 83:3998–4003

    Article  CAS  PubMed  Google Scholar 

  • Hibino M, Shigemori M, Itoh H, Nagayama K, Kinosita K (1991) Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys J 59:209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibino M, Itoh H, Kinosita K (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J 64:1789–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho M-C, Casciola M, Levine ZA, Vernier PT (2013) Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores. J Phys Chem B 117:11633–11640

    Article  CAS  PubMed  Google Scholar 

  • Hojo S, Shimizu K, Yositake H, Muraji M, Tsujimoto H, Tatebe W (2003) The relationship between electropermeabilization and cell cycle and cell size of Saccharomyces cerevisiae. IEEE Trans Nanobiosci 2:35–39

    Article  Google Scholar 

  • Ibey BL, Roth CC, Pakhomov AG, Bernhard JA, Wilmink GJ, Pakhomova ON (2011) Dose-dependent thresholds of 10-ns electric pulse induced plasma membrane disruption and cytotoxicity in multiple cell lines. PLoS One 6:e15642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivorra A, Rubinsky B (2007) In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry 70:287–295

    Article  CAS  PubMed  Google Scholar 

  • Ivorra A, Villemejane J, Mir LM (2010) Electrical modeling of the influence of medium conductivity on electroporation. Phys Chem Chem Phys 12:10055–10064

    Article  CAS  PubMed  Google Scholar 

  • Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F (2014) ESCRT machinery is required for plasma membrane repair. Science 343:1247136

    Article  PubMed  Google Scholar 

  • Kinosita KJ, Tsong TY (1977) Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268:438–441

    Article  PubMed  Google Scholar 

  • Kinosita K, Tsong TY (1979) Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta Biomembr 554:479–497

    Article  CAS  Google Scholar 

  • Kinosita K, Ashikawa I, Saita N, Yoshimura H, Itoh H, Nagayama K, Ikegami A (1988) Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophys J 53:1015–1019

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotnik T, Miklavcic D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79:670–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotnik T, Miklavčič D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 90:480–491

    Article  CAS  PubMed  Google Scholar 

  • Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417

    Article  CAS  PubMed  Google Scholar 

  • Leguèbe M, Silve A, Mir LM, Poignard C (2014) Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments. J Theor Biol 360:83–94

    Article  PubMed  Google Scholar 

  • Li J, Lin H (2010) The current–voltage relation for electropores with conductivity gradients. Biomicrofluidics 4:1–17

    Google Scholar 

  • Lindner P, Neumann E, Rosenheck K (1977) Kinetics of permeability changes induced by electric impulses in chromaffin granules. J Membr Biol 32:231–254

    Article  CAS  PubMed  Google Scholar 

  • Mauroy C, Portet T, Winterhalder M, Bellard E, Blache MC, Teissié J, Zumbusch A, Rols MP (2012) Giant lipid vesicles under electric field pulses assessed by non invasive imaging. Bioelectrochemistry 87:253–259

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Toensing K, Kakorin S, Budde P, Frey J (1998) Mechanism of electroporative dye uptake by mouse B cells. Biophys J 74:98–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlin M, Miklavčič D (2008) Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation: relation between short-lived and long-lived pores. Bioelectrochemistry 74:38–46

    Article  CAS  PubMed  Google Scholar 

  • Pavlin M, Kanduser M, Rebersek M, Pucihar G, Hart FX, Magjarevic R, Miklavcic D (2005) Effect of cell electroporation on the conductivity of a cell suspension. Biophys J 88:4378–4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlin M, Leben V, Miklavčič D (2007) Electroporation in dense cell suspension: theoretical and experimental analysis of ion diffusion and cell permeabilization. Biochim Biophys Acta Gen Subj 1770:12–23

    Article  CAS  Google Scholar 

  • Petrášek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437–1448

    Article  PubMed  Google Scholar 

  • Poddevin B, Orlowski S, Belehradek J, Mir LM (1991) Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture. Biochem Pharmacol 42:S67–S75

    Article  CAS  PubMed  Google Scholar 

  • Puc M, Kotnik T, Mir LM, Miklavčič D (2003) Quantitative model of small molecules uptake after in vitro cell electropermeabilization. Bioelectrochemistry 60:1–10

    Article  CAS  PubMed  Google Scholar 

  • Pucihar G, Kotnik T, Valič B, Miklavčič D (2006) Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann Biomed Eng 34:642–652

    Article  CAS  PubMed  Google Scholar 

  • Pucihar G, Kotnik T, Miklavčič D, Teissié J (2008) Kinetics of transmembrane transport of small molecules into electropermeabilized cells. Biophys J 95:2837–2848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pucihar G, Miklavčič D, Kotnik T (2009) A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans Biomed Eng 56:1491–1501

    Article  PubMed  Google Scholar 

  • Rems L, Ušaj M, Kandušer M, Reberšek M, Miklavčič D, Pucihar G (2013) Cell electrofusion using nanosecond electric pulses. Sci Rep 3:3382

    Article  PubMed  PubMed Central  Google Scholar 

  • Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Retelj L, Pucihar G, Miklavcic D (2013) Electroporation of intracellular liposomes using nanosecond electric pulses: a theoretical study. IEEE Trans Biomed Eng 60:2624–2635

    Article  PubMed  Google Scholar 

  • Rols MP, Teissié J (1990) Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58:1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rols M-P, Teissié J (1992) Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochim Biophys Acta 1111:45–50

    Article  CAS  PubMed  Google Scholar 

  • Sale AJH, Hamilton WA (1968) Effects of high electric fields on micro-organisms III. Lysis of erytrhocytes and protoplasts. Biochim Biophys Acta Biomembr 163:37–43

    Article  CAS  Google Scholar 

  • Saulis G, Venslauskas MS, Naktinis J (1991) Kinetics of pore resealing in cell membranes after electroporation. J Electroanal Chem Interfacial Electrochem 321:1–13

    Article  Google Scholar 

  • Silve A, Mir LM (2011) Cell electropermeabilization and cellular uptake of small molecules: the electrochemotherapy concept. In: Kee TS, Gehl J, Lee WE (eds) Clinical aspects of electroporation. Springer, New York, pp 69–82

    Chapter  Google Scholar 

  • Silve A, Brunet AG, Al-Sakere B, Ivorra A, Mir LM (2014) Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization? Biochim Biophys Acta 1840:2139–2151

    Article  CAS  PubMed  Google Scholar 

  • Sixou S, Teissié J (1990) Specific electropermeabilization of leucocytes in a blood sample and application to large volumes of cells. Biochim Biophys Acta Biomembr 1028:154–160

    Article  CAS  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teissié J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Teissié J, Tsong TY (1981) Electric field induced transient pores in phospholipid bilayer vesicles. Biochemistry 20:1548–1554

    Article  PubMed  Google Scholar 

  • Tekle E, Astumian RD, Chock PB (1990) Electro-permeabilization of cell membranes: effect of the resting membrane potential. Biochem Biophys Res Commun 172:282–287

    Article  CAS  PubMed  Google Scholar 

  • Tekle E, Astumian RD, Chock PB (1991) Electroporation by using bipolar oscillating electric field: an improved method for DNA transfection of NIH 3T3 cells. Proc Natl Acad Sci USA 88:4230–4234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekle E, Astumian RD, Chock PB (1994) Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci USA 91:11512–11516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekle E, Astumian RD, Friauf WA, Chock PB (2001) Asymmetric pore distribution and loss of membrane lipid in electroporated DOPC vesicles. Biophys J 81:960–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tounekti O, Pron G, Belehradek J, Mir LM (1993) Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized. Cancer Res 53:5462–5469

    CAS  PubMed  Google Scholar 

  • Towhidi L, Kotnik T, Pucihar G, Firoozabadi SMP, Mozdarani H, Miklavčič D (2008) Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation. Electromagn Biol Med 27:372–385

    Article  CAS  PubMed  Google Scholar 

  • Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP (2006) Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers—in cells and in silico. Phys Biol 3:233–247

    Article  CAS  PubMed  Google Scholar 

  • Wegner LH (2015) The conductance of cellular membranes at supra-physiological voltages. Bioelectrochemistry 103:34–38

    Article  CAS  PubMed  Google Scholar 

  • Wegner LH, Flickinger B, Eing C, Berghöfer T, Hohenberger P, Frey W, Nick P (2011) A patch clamp study on the electro-permeabilization of higher plant cells: supra-physiological voltages induce a high-conductance, K+ selective state of the plasma membrane. Biochim Biophys Acta Biomembr 1808:1728–1736

    Article  CAS  Google Scholar 

  • Wegner LH, Frey W, Silve A (2015) Electroporation of DC-3F cells is a dual process. Biophys J 108:1660–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JA, Pliquett U, Blackmore PF (2011) Plasma membrane charging of Jurkat cells by nanosecond pulsed electric fields. Eur Biophys J 40:947–957

    Article  PubMed  Google Scholar 

  • Ziegler MJ, Vernier PT (2008) Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B 112:13588–13596

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14:881–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Economy and Competitiveness of Spain through Grant TEC2014-52383-C3-2-R. PTV received support from the Old Dominion University Frank Reidy Research Center for Bioelectrics and the Air Force Office of Scientific Research (FA9550-15-1-0517, FA9550-14-1-0123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Ivorra.

Additional information

Antoni Ivorra: Serra Húnter Fellow, Barcelona, Spain.

Appendix

Appendix

Variation in Extracellular Concentration

Assuming that the initial intracellular concentration is zero and there is no change in cell volume during the experiments, initial and final concentrations can be written as:

$$\left\{ {\begin{array}{*{20}l} {c_{i,0} = 0} \hfill \\ {c_{e,0} = N_{0} /V\left( {1 - F} \right)} \hfill \\ {c_{i,f} = N/F \times V} \hfill \\ {c_{e,f = } \left( {N_{0} - N} \right)/V\left( {1 - F} \right)} \hfill \\ \end{array} } \right.$$
(18)

being N 0 the total number of molecules, N the number of molecules that enter the cell, V the total volume of the suspension, and F the cell volume fraction. If we express the final intracellular concentration as a fraction of the initial extracellular concentration \(c_{i,f} = a \times c_{e,i}\), then from (18):

$$a = \frac{{c_{i,f} }}{{c_{e,i} }} = \frac{{N\left( {1 - F} \right)}}{{N_{0} F}}$$
(19)

On the other hand, from (18), the relationship between final and initial extracellular concentration is:

$$\frac{{c_{e,f} }}{{c_{e,0} }} = \frac{{N_{0} - N}}{{N_{0} }}$$
(20)

Combining 19 and 20 we can obtain an expression of the term \(c_{e,f} /c_{e,0}\) as a function of F and a:

$$\frac{{c_{e,f} }}{{c_{e,0} }} = \frac{{1 - F\left( {1 + a} \right)}}{1 - F}$$
(21)

For a cell volume fraction of 0.2 and a final intracellular concentration of 5 % the initial extracellular concentration, the variation of the extracellular concentration is 1.25 %.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercadal, B., Vernier, P.T. & Ivorra, A. Dependence of Electroporation Detection Threshold on Cell Radius: An Explanation to Observations Non Compatible with Schwan’s Equation Model. J Membrane Biol 249, 663–676 (2016). https://doi.org/10.1007/s00232-016-9907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-016-9907-0

Keywords

Navigation