Skip to main content
Log in

Ouabain Regulates CFTR-Mediated Anion Secretion and Na,K-ATPase Transport in ADPKD Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Cyst enlargement in autosomal dominant polycystic kidney disease (ADPKD) requires the transepithelial secretion of fluid into the cyst lumen. We previously showed that physiological amounts of ouabain enhance cAMP-dependent fluid secretion and cyst growth of human ADPKD cyst epithelial cells in culture and formation of cyst-like dilations in metanephric kidneys from Pkd1 mutant mice. Here, we investigated the mechanisms by which ouabain promotes cAMP-dependent fluid secretion and cystogenesis. Ouabain (3 nM) enhanced cAMP-induced cyst-like dilations in embryonic kidneys from Pkd1 m1Bei mice, but had no effect on metanephroi from Pkd1 m1Bei mice that lack expression of the cystic fibrosis transmembrane conductance regulator (CFTR). Similarly, ouabain stimulation of cAMP-induced fluid secretion and in vitro cyst growth of ADPKD cells were abrogated by CFTR inhibition, showing that CFTR is required for ouabain effects on ADPKD fluid secretion. Moreover, ouabain directly enhanced the cAMP-dependent Cl efflux mediated by CFTR in ADPKD monolayers. Ouabain increased the trafficking of CFTR to the plasma membrane and up-regulated the expression of the CFTR activator PDZK1. Finally, ouabain decreased plasma membrane expression and activity of the Na,K-ATPase in ADPKD cells. Altogether, these results show that ouabain enhances net fluid secretion and cyst formation by activating apical anion secretion via CFTR and decreasing basolateral Na+ transport via Na,K-ATPase. These results provide new information on the mechanisms by which ouabain affects ADPKD cells and further highlight the importance of ouabain as a non-genomic stimulator of cystogenesis in ADPKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bagrov AY, Shapiro JI, Fedorova OV (2009) Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev 61:9–38. doi:10.1124/pr.108.000711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belibi FA et al (2004) Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int 66:964–973. doi:10.1111/j.1523-1755.2004.00843.x

    Article  CAS  PubMed  Google Scholar 

  • Blanco G, Mercer RW (1998) Isozymes of the Na,K-ATPase: heterogeneity in structure. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  • Blanco G, Wallace DP (2013) Novel role of ouabain as a cystogenic factor in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 305:F797–F812. doi:10.1152/ajprenal.00248.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blaustein MP, Hamlyn JM (2010) Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins. Biochim Biophys Acta 1802:1219–1229. doi:10.1016/j.bbadis.2010.02.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cai H, Wu L, Qu W, Malhotra D, Xie Z, Shapiro JI, Liu J (2008) Regulation of apical NHE3 trafficking by ouabain-induced activation of the basolateral Na,K-ATPase receptor complex. Am J Physiol Cell Physiol 294:C555–C563

    Article  CAS  PubMed  Google Scholar 

  • Chueh SC, Guh JH, Chen J, Lai MK, Teng CM (2001) Dual effects of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J Urol 166:347–353

    Article  CAS  PubMed  Google Scholar 

  • Davidow CJ, Maser RL, Rome LA, Calvet JP, Grantham JJ (1996) The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int 50:208–218

    Article  CAS  PubMed  Google Scholar 

  • Dmitrieva RI, Doris PA (2003) Ouabain is a potent promoter of growth and activator of ERK1/2 in ouabain-resistant rat renal epithelial cells. J Biol Chem 278:28160–28166

    Article  CAS  PubMed  Google Scholar 

  • Fedeles SV, Gallagher AR, Somlo S (2014) Polycystin-1: a master regulator of intersecting cystic pathways. Trends Mol Med 20:251–260. doi:10.1016/j.molmed.2014.01.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fedorova OV, Lakatta EG, Bagrov AY (2000) Endogenous Na,K pump ligands are differentially regulated during acute NaCl loading of Dahl rats. Circulation 102:3009–3014

    Article  CAS  PubMed  Google Scholar 

  • Feraille E, Doucet A (2001) Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 81:345–418

    CAS  PubMed  Google Scholar 

  • Ferrandi M, Molinari I, Barassi P, Minotti E, Bianchi G, Ferrari P (2004) Organ hypertrophic signaling within caveolae membrane subdomains triggered by ouabain and antagonized by PST 2238. J Biol Chem 279:33306–33314. doi:10.1074/jbc.M402187200

    Article  CAS  PubMed  Google Scholar 

  • Grantham JJ (2008) Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 359:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Grindstaff KK, Blanco G, Mercer RW (1995) Characterization of Na,K-ATPase isoform expression and activity in MDCK and Caco-2 epithelial cells. Epithelial Cell Biol 4:17–24

    CAS  PubMed  Google Scholar 

  • Guggino WB, Stanton BA (2006) New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 7:426–436. doi:10.1038/nrm1949

    Article  CAS  PubMed  Google Scholar 

  • Harris PC, Rossetti S (2010) Molecular diagnostics for autosomal dominant polycystic kidney disease. Nat Rev Nephrol 6:197–206. doi:10.1038/nrneph.2010.18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez-Gonzalez EO et al (2006) Sodium and epithelial sodium channels participate in the regulation of the capacitation-associated hyperpolarization in mouse sperm. J Biol Chem 281:5623–5633. doi:10.1074/jbc.M508172200

    Article  CAS  PubMed  Google Scholar 

  • Herron BJ et al (2002) Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat Genet 30:185–189

    Article  CAS  PubMed  Google Scholar 

  • Jansson K et al (2012) Endogenous concentrations of ouabain act as a cofactor to stimulate fluid secretion and cyst growth of in vitro ADPKD models via cAMP and EGFR-Src-MEK pathways. Am J Physiol Renal Physiol 303:F982–F990. doi:10.1152/ajprenal.00677.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khundmiri SJ, Metzler MA, Ameen M, Amin V, Rane MJ, Delamere NA (2006) Ouabain induces cell proliferation through calcium-dependent phosphorylation of Akt (protein kinase B) in opossum kidney proximal tubule cells. Am J Physiol Cell Physiol 291:C1247–C1257. doi:10.1152/ajpcell.00593.2005

    Article  CAS  PubMed  Google Scholar 

  • Kometiani P, Li J, Gnudi L, Kahn BB, Askari A, Xie Z (1998) Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases. J Biol Chem 273:15249–15256

    Article  CAS  PubMed  Google Scholar 

  • Li J et al (2010) Ouabain protects against adverse developmental programming of the kidney. Nat Commun 1:42. doi:10.1038/ncomms1043

    CAS  PubMed  Google Scholar 

  • Liu L et al (2003) Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase. Am J Physiol Cell Physiol 284:C1550–C1560. doi:10.1152/ajpcell.00555.2002

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Kesiry R, Periyasamy SM, Malhotra D, Xie Z, Shapiro JI (2004) Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int 66:227–241. doi:10.1111/j.1523-1755.2004.00723.x

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Liang M, Liu L, Malhotra D, Xie Z, Shapiro JI (2005) Ouabain-induced endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells requires caveolin-1. Kidney Int 67:1844–1854. doi:10.1111/j.1523-1755.2005.00283.x

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Ivanov AV, Gable ME, Jolivel F, Morrill GA, Askari A (2011) Comparative properties of caveolar and noncaveolar preparations of kidney Na+/K+-ATPase. Biochemistry 50:8664–8673. doi:10.1021/bi2009008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Loreaux EL, Kaul B, Lorenz JN, Lingrel JB (2008) Ouabain-Sensitive alpha1 Na,K-ATPase enhances natriuretic response to saline load. J Am Soc Nephrol JASN 19:1947–1954. doi:10.1681/ASN.2008020174

    Article  CAS  PubMed  Google Scholar 

  • Magenheimer BS et al (2006) Early embryonic renal tubules of wild-type and polycystic kidney disease kidneys respond to cAMP stimulation with cystic fibrosis transmembrane conductance regulator/Na(+), K(+),2Cl(−) Co-transporter-dependent cystic dilation. J Am Soc Nephrol 17:3424–3437

    Article  CAS  PubMed  Google Scholar 

  • Nesher M, Dvela M, Igbokwe VU, Rosen H, Lichtstein D (2009) Physiological roles of endogenous ouabain in normal rats. Am J Physiol Heart Circ Physiol 297:H2026–H2034. doi:10.1152/ajpheart.00734.2009

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AN, Wallace DP, Blanco G (2007) Ouabain binds with high affinity to the Na,K-ATPase in human polycystic kidney cells and induces extracellular signal-regulated kinase activation and cell proliferation. J Am Soc Nephrol 18:46–57

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AN, Jansson K, Sanchez G, Sharma M, Reif G, Wallace DP, Blanco G (2011) Ouabain activates the Na,K-ATPase signalosome to induce autosomal dominant polycystic kidney disease cell proliferation. Am J Physiol Renal Physiol 301:F897–F906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paul BM, Vanden Heuvel GB (2014) Kidney: polycystic kidney disease Wiley interdisciplinary reviews. Dev Biol 3:465–487. doi:10.1002/wdev.152

    CAS  Google Scholar 

  • Pei Y (2011) Practical genetics for autosomal dominant polycystic kidney disease. Nephron Clin Pract 118:c19–c30. doi:10.1159/000320887

    Article  PubMed  Google Scholar 

  • Pierre SV, Xie Z (2006) The Na,K-ATPase receptor complex: its organization and membership. Cell Biochem Biophys 46:303–316

    Article  CAS  PubMed  Google Scholar 

  • Reif G, Yamaguchi T, Nivens E, Fujiki H, Pinto CS, Wallace DP (2011) Tolvaptan inhibits ERK-dependent cell proliferation, Cl secretion, and in vitro cyst growth of human ADPKD cells stimulated by vasopressin. Am J Physiol Renal Physiol 301:F1005–F1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riganti C et al (2011) Pleiotropic effects of cardioactive glycosides. Curr Med Chem 18:872–885

    Article  CAS  PubMed  Google Scholar 

  • Schoner W, Scheiner-Bobis G (2005) Endogenous cardiac glycosides: hormones using the sodium pump as signal transducer. Semin Nephrol 25:343–351

    Article  CAS  PubMed  Google Scholar 

  • Silva E, Soares-da-Silva P (2012) New insights into the regulation of Na+, K+-ATPase by ouabain. Int Rev Cell Mol Biol 294:99–132. doi:10.1016/B978-0-12-394305-7.00002-1

    Article  CAS  PubMed  Google Scholar 

  • Singh AK et al (2009) Differential roles of NHERF1, NHERF2, and PDZK1 in regulating CFTR-mediated intestinal anion secretion in mice. J Clin Invest 119:540–550. doi:10.1172/JCI35541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sullivan LP, Wallace DP, Grantham JJ (1998) Epithelial transport in polycystic kidney disease. Physiol Rev 78:1165–1191

    CAS  PubMed  Google Scholar 

  • Takacs-Jarrett M, Sweeney WE, Avner ED, Cotton CU (2001) Generation and phenotype of cell lines derived from CF and non-CF mice that carry the H-2K(b)-tsA58 transgene. Am J Physiol Cell Physiol 280:C228–C236

    CAS  PubMed  Google Scholar 

  • Torres VE, Harris PC (2007) Polycystic kidney disease: genes, proteins, animal models, disease mechanisms and therapeutic opportunities. J Intern Med 261:17–31

    Article  CAS  PubMed  Google Scholar 

  • Wagoner K, Sanchez G, Nguyen AN, Enders GC, Blanco G (2005) Different expression and activity of the alpha1 and alpha4 isoforms of the Na,K-ATPase during rat male germ cell ontogeny. Reproduction 130:627–641. doi:10.1530/rep.1.00806

    Article  CAS  PubMed  Google Scholar 

  • Wallace DP (2011) Cyclic AMP-mediated cyst expansion. Biochim Biophys Acta 1812:1291–1300. doi:10.1016/j.bbadis.2010.11.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wallace DP, Grantham JJ, Sullivan LP (1996) Chloride and fluid secretion by cultured human polycystic kidney cells. Kidney Int 50:1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Wallace DP, Christensen M, Reif G, Belibi F, Thrasher JB, Herrell D, Grantham JJ (2002) Electrolyte and fluid secretion by cultured human inner medullary collecting duct cells. Am J Physiol Renal Physiol 283:F1337–F1350

    Article  CAS  PubMed  Google Scholar 

  • Wallace DP, Reif G, Hedge AM, Thrasher JB, Peitrow P (2004) Adrenergic regulation of salt and fluid secretion in human medullary collecting duct cells. Am J Physiol Renal Physiol 287:F639–F648

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yue H, Derin RB, Guggino WB, Li M (2000) Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell 103:169–179

    Article  CAS  PubMed  Google Scholar 

  • West MR, Molloy CR (1996) A microplate assay measuring chloride ion channel activity. Anal Biochem 241:51–58. doi:10.1006/abio.1996.0377

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Cai T (2003) Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Mol Interv 3:157–168. doi:10.1124/mi.3.3.157

    Article  CAS  PubMed  Google Scholar 

  • Yan Y et al (2012) Ouabain-stimulated trafficking regulation of the Na/K-ATPase and NHE3 in renal proximal tubule cells. Mol Cell Biochem 367:175–183. doi:10.1007/s11010-012-1331-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang D et al (2012) Ouabain mimics low temperature rescue of F508del-CFTR in cystic fibrosis epithelial cells. Front Pharmacol 3:176. doi:10.3389/fphar.2012.00176

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a National Institutes of Health Grant DK081431 to G.B. We thank the Polycystic Kidney Disease Foundation and the PKD Research Biomaterials and Cellular Models Core at the University of Kansas Medical Center and hospitals participating in the Polycystic Kidney Research Retrieval Program for providing human ADPKD kidneys from which primary cells were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Blanco.

Ethics declarations

Conflict of interest

No conflict of interest, financial or otherwise related with this work, are declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansson, K., Venugopal, J., Sánchez, G. et al. Ouabain Regulates CFTR-Mediated Anion Secretion and Na,K-ATPase Transport in ADPKD Cells. J Membrane Biol 248, 1145–1157 (2015). https://doi.org/10.1007/s00232-015-9832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9832-7

Keywords

Navigation