Skip to main content

Advertisement

Log in

Actin Cortex Rearrangement Caused by Coupling with the Lipid Bilayer-Modeling Considerations

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Studies of cell membrane fluctuations under micro rheological measurements suggest that coupling between the lipid bilayer and the actin cortex can affects viscoelastic behavior of the single cell membranes. Coupling induces anomalous nature of energy dissipation during rearrangement of both: the actin cortex and the lipid bilayer. The actin cortex ability to rearrange for various cell types: erythrocytes, Jurkat cells, fibroblasts, epithelial lung cells, and muscle cells based on experimental data for storage and loss moduli versus angular velocity are considered. The cortex of softer cells such as erythrocytes, Jurkat cells, and fibroblasts has the ability to rearrange at low angular velocities which is quantified by their rearrangement time and the average size of the cortex micro domains. The rearrangement time of the cortex for Jurkat cells and fibroblasts is at the order of magnitude higher than that for erythrocytes, i.e., 2.70–7.53 s. The average size of the cortex micro domains for erythrocytes varied from 3.0 to 5.3 μm, for Jurkat cells is ~0.20–0.22 μm and for fibroblasts is ~36 nm. Lower size of the micro domains and higher rearrangement time indicate the stiffer cortex structure. The cortex rearrangement for stiffer cells such as epithelial lung cells and muscle cells has never been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farre R, Navajas D (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84:2071–2079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Almenar-Queralt A, Gregorio CC, Fowler VM (1999) Tropomodulin assembles early in myofibrillogenesis in chick skeletal muscle: evidence that thin filaments rearrange to form striated myofibrils. J Cell Sci 112:1111–1123

    CAS  PubMed  Google Scholar 

  • Amin MS, Park YK, Lue N, Dasari RR, Badizadegan K, Feld MS, Popescu G (2007) Microrheology of red blood cell membrane using dynamics scattering microscopy. Opt Express 15(25):17001–17009

    Article  CAS  PubMed  Google Scholar 

  • Bausch AR, Ziemann F, Boulbitc AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75:2038–2049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borukhov I, Bruinsma RF, Gelbart WM, Liu AJ, Lubensky TC (2005) Structural polymorphism of the cytoskeleton: a model of linker-assisted filament aggregation. PNAS 102(10):3673–3678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cai X, Xing X, Cai J, Chen Q, Wu S, Huang F (2010) Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: an AFM study. Micron 41:257–262

    Article  CAS  PubMed  Google Scholar 

  • Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell biology. J Cell Biol 175(3):477–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalhaimer P, Discher DE, Lubensky TC (2007) Crosslinked actin network show liquid crystal elastomeric behavior, including soft-mode elasticity. Nature Phys 3:354–360

    Article  CAS  Google Scholar 

  • Djordjevic VD, Jaric J, Fabrz B, Fredberg JJ, Stamenovic D (2003) Fractional derivatives embody essential features of cell rheological behavior. Ann Biomed Eng 31:692–699

    Article  PubMed  Google Scholar 

  • Dustin ML, Davis SJ (2014) TCR signaling: the barrier within. Nature Immunol 15:136–137

    Article  CAS  Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Let 87(14):148102-1-4

    Article  Google Scholar 

  • Feneberg W, Aepfelbacher M, Sackmann E (2004) Microviscoelasticity of the apical cell surface of human umbilical vein endothelial cells (HUVEC) within confluent monolayers. Biophys J 87:1338–1350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gov NS (2007) Less is more: removing membrane attachments stiffness the RBC cytoskeleton. New J Phys 9(429):1–8

    Google Scholar 

  • Harland CW, Bradley MJ, Parthasarathy R (2011) Retraction for “Phospholipid bilayers are viscoelastic”, by Harland CW, Bradley MJ, Parthasarathy R, which appeared in PNAS 2011, 107(45), pp. 19146–19150, (2010). PNAS 108(35):14705

    CAS  PubMed  Google Scholar 

  • Jonas M, Chung E, Kim YH, So PTC (2006) Cytoskeletal mechanics fast fluorescence microrheology. GEM4—August 2006—MIT So Lab—FLTM, 1–3

  • Kuznetsova TG, Maria N, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI (2007) Atomic force microscopy probing of cell elasticity. Micron 38:824–833

    Article  CAS  PubMed  Google Scholar 

  • Mangeat P, Burridge K (1984) Actin-membrane interaction in fibroblast: what proteins are involved in this association? J Cell Biol 99(1):95s–103s

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mikhalyov I, Samsonov A (2011) Lipid raft detecting in membranes of live erythrocytes. Biochem Biophys Acta 1808:1930–1939

    Article  CAS  PubMed  Google Scholar 

  • Mofrad MRK, Karcher H, Kamm RD (2006) Continuum elastic or viscoelastic models for the cell. In: Mofrad MRK, Kamm RD (eds) Cytoskeletal mechanics, models and measurement. Cambridge University Press, New York, pp 71–84

    Chapter  Google Scholar 

  • Pajic-Lijakovic I, Milivojevic M (2014) Modeling analysis of the lipid bilayer-cytoskeleton coupling in erythrocyte membrane. Biomech Model Mechanobiol. doi:10.1007/s10237-014-0559-7

    PubMed  Google Scholar 

  • Peng Z, Zhu Q (2013) Deformation of the erythrocyte cytoskeleton in tank treading motions. Soft Matter 9:7617–7627

    Article  CAS  Google Scholar 

  • Podlubny I (1999) Fractional differential equations, mathematics in science and engineering, vol 198. Academic Press, London, p 78

    Google Scholar 

  • Popescu G, Park YK, Dasari RR, Badizadegan K, Feld MS (2007) Coherence properties of red blood cell membrane motion. Phys Rev E 76:031902-1-5

    Article  Google Scholar 

  • Pradhan D, Tseng K, Cianci CD, Morrow JS (2004) Antibodies to hIA2 spectrin identify in-homogeneities in the erythrocyte membrane skeleton. Blood Cells Mol Dis 32:408–410

    Article  CAS  PubMed  Google Scholar 

  • Puig-de-Morales-Marinkovic M, Turner KT, Butler JP, Fredberg JJ, Suresh S (2007) Viscoelasticity of the human red blood cell. Am J Physiol Cell Physiol 293:C597–C605

    Article  CAS  PubMed  Google Scholar 

  • Wagh AA, Roan E, Waters CM (2008) Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy. Am J Phisiol Lung Cell Mol Physiol 295(1):L54–L60

    Article  CAS  Google Scholar 

  • Wagner B, Tharmann R, Haase I, Fischer M, Bausch AR (2006) Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties. PNAS 103(38):13974–13978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warren RL, Tassieri M, Li X, Glidle A, Paterson DJ, Carlsson A, Cooper JM (2013) Rheology at the micro-scale: new tools for bioanalysis. In: Optical methods for inspection, characterization and imaging of biomaterials, 13–16, Munich, Germany, Proc SPIE Vol. 8792, p. 8792141 1-13

Download references

Acknowledgments

The authors gratefully acknowledge funding support of the Ministry of Education, Science and Technological Development of the Republic Serbia (Grants III 46001, and III 46010).

Conflict of interest

The author reports no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Pajic-Lijakovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajic-Lijakovic, I., Milivojevic, M. Actin Cortex Rearrangement Caused by Coupling with the Lipid Bilayer-Modeling Considerations. J Membrane Biol 248, 337–347 (2015). https://doi.org/10.1007/s00232-015-9775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9775-z

Keywords

Navigation