Skip to main content
Log in

Electrotransfection and Lipofection Show Comparable Efficiency for In Vitro Gene Delivery of Primary Human Myoblasts

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Transfection of primary human myoblasts offers the possibility to study mechanisms that are important for muscle regeneration and gene therapy of muscle disease. Cultured human myoblasts were selected here because muscle cells still proliferate at this developmental stage, which might have several advantages in gene therapy. Gene therapy is one of the most sought-after tools in modern medicine. Its progress is, however, limited due to the lack of suitable gene transfer techniques. To obtain better insight into the transfection potential of the presently used techniques, two non-viral transfection methods—lipofection and electroporation—were compared. The parameters that can influence transfection efficiency and cell viability were systematically approached and compared. Cultured myoblasts were transfected with the pEGFP-N1 plasmid either using Lipofectamine 2000 or with electroporation. Various combinations for the preparation of the lipoplexes and the electroporation media, and for the pulsing protocols, were tested and compared. Transfection efficiency and cell viability were inversely proportional for both approaches. The appropriate ratio of Lipofectamine and plasmid DNA provides optimal conditions for lipofection, while for electroporation, RPMI medium and a pulsing protocol using eight pulses of 2 ms at E = 0.8 kV/cm proved to be the optimal combination. The transfection efficiencies for the optimal lipofection and optimal electrotransfection protocols were similar (32 vs. 32.5 %, respectively). Both of these methods are effective for transfection of primary human myoblasts; however, electroporation might be advantageous for in vivo application to skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    Article  CAS  PubMed  Google Scholar 

  • André FM, Gehl J, Sersa G, Préat V, Hojman P, Eriksen J, Golzio M, Cemazar M, Pavselj N, Rols MP, Miklavcic D, Neumann E, Teissié J, Mir LM (2008) Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Hum Gene Ther 19:1261–1272

    Article  PubMed  Google Scholar 

  • André C, Swain WF, Page CP, Macklin MD, Slama J, Hatzis D, Eriksson E (1994) In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci USA 91:12188–12192

    Article  Google Scholar 

  • Boulaiz H, Marchal JA, Prados J, Melguizo C, Aránega A (2005) Non-viral and viral vectors for gene therapy. Cell Mol Biol 51:3–22

    CAS  PubMed  Google Scholar 

  • Bregar VB, Lojk J, Suštar V, Veranič P, Pavlin M (2013) Visualization of internalization of functionalized cobalt ferrite nanoparticles and their intracellular fate. Int J Nanomed 8:919–931

    Google Scholar 

  • Cavazzana-Calvo M, Thrasher A, Mavilio F (2004) The future of gene therapy. Nature 427:779–781

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Golzio M, Sersa G, Rols M, Teissie J (2006) Electrically-assisted nucleic acids Delivery to tissues in vivo: where do we stand? Curr Pharm Des 12:3817–3825

    Article  CAS  PubMed  Google Scholar 

  • Cemazar M, Sersa G (2007) Electrotransfer of therapeutic molecules into tissues. Curr Opin Mol Ther 9:554–562

    CAS  PubMed  Google Scholar 

  • Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC (2004) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33:95–103

    Article  CAS  PubMed  Google Scholar 

  • Durieux A-C, Bonnefoy R, Manissolle C, Freyssenet D (2002) High-efficiency gene electrotransfer into skeletal muscle: description and physiological applicability of a new pulse generator. Biochem Biophysic Res Comm 296:443–450

    Article  CAS  Google Scholar 

  • Faurie C, Rebersek M, Golzio M, Kanduser M, Escoffre JM, Pavlin M, Teissie J, Miklavcic D, Rols MP (2010) Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J Gene Med 12:117–125

    Article  CAS  PubMed  Google Scholar 

  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferber D (2001) Safer and virus-free? Science 294:1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Frandsen SK, Gissel H, Hojman P, Tramm T, Eriksen J, Gehl J (2012) Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis. Cancer Res 72:1336–1341

    Article  CAS  PubMed  Google Scholar 

  • Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177:437–447

    Article  CAS  PubMed  Google Scholar 

  • Golicnik A, Podbregar M, Lainscak M, Anker SD, Grubic Z, Mars T (2012) Atorvastatin modulates constitutive and lipopolysaccharide induced IL-6 secretion in precursors of human skeletal muscle. Afr J Pharm Pharmacol 6:241–247

    Article  CAS  Google Scholar 

  • Golzio M, Mora MP, Raynaud C, Delteil C, Teissié J, Rols MP (1998) Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells. Biophys J 74:3015–3022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golzio M, Teissie J, Rols M-P (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA 99:1292–1297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gothelf A, Gehl J (2012) What you always needed to know about electroporation based DNA vaccines. Hum Vaccin Immunother 8:1694–1702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gothelf A, Eriksen J, Hojman P, Gehl J (2010) Duration and level of transgene expression after gene electrotransfer to skin in mice. Gene Ther 17:839–845

    Article  CAS  PubMed  Google Scholar 

  • Haberl S, Kandušer M, Flisar K, Hodžić D, Bregar VB, Miklavčič D, Escoffre JM, Rols MP, Pavlin M (2013) Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. J Gene Med 15:169–181

    Article  CAS  PubMed  Google Scholar 

  • Heller R, Cruz Y, Heller LC, Gilbert RA, Jaroszeski MJ (2010) Electrically mediated delivery of plasmid DNA to the skin, using a multielectrode array. Hum Gene Ther 21:357–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hojman P (2010) Basic principles and clinical advancements of muscle electrotransfer. Curr Gene Ther 10:128–138

    Article  CAS  PubMed  Google Scholar 

  • Hojman P, Zibert JR, Gissel H, Eriksen J, Gehl J (2007) Gene expression profiles in skeletal muscle after gene electrotransfer. BMC Mol Biol 8:56

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunt MA, Currie MJ, Robinson BA, Dachs GU (2010) Optimizing transfection of primary human umbilical vein endothelial cells using commercially available chemical transfection reagents. J Biomol Tech. 21:66–72

    PubMed Central  PubMed  Google Scholar 

  • Kanduser M, Miklavcic D, Pavlin M (2009) Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—an in vitro study. Bioelectrochemistry 74:265–271

    Article  CAS  PubMed  Google Scholar 

  • Katalinić M, Miš K, Pirkmajer S, Grubič Z, Kovarik Z, Marš T (2012) The cholinergic and non-cholinergic effects of organophosphates and oximes in cultured human myoblasts. Chem Biol Interact 203:144–148

    Article  PubMed  Google Scholar 

  • Konieczny P, Swiderski K, Chamberlain JS (2013) Gene and cell-mediated therapies for muscular dystrophy. Muscle Nerve 47:649–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kotnik N, Haberl S, Pegan K, Marš T, Grubič Z, Pavlin M (2010) Comparison of electroporation and lipofection for in vitro transfer of plasmid PEGFP-N1 into human myoblasts. Proceedings of the Eighteenth International Electrotechnical and Computer Science Conference ERK 2009, pp 287–290

  • Lehrman S (1999) Virus treatment questioned after gene therapy death. Nature 401:517–518

    Article  CAS  PubMed  Google Scholar 

  • Li S, Benninger M (2002) Applications of muscle electroporation gene therapy. Curr Gene Ther 2:101–105

    Article  CAS  PubMed  Google Scholar 

  • Marshall DJ, Leiden JM (1998) Recent advances in skeletal-muscle-based gene therapy. Curr Opin Genet Dev 8:360–365

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen I (1999) Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther 6:508–514

    Article  CAS  PubMed  Google Scholar 

  • Maurisse R, De Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, Gruenert DC (2010) Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol 10:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Menasché P (2004) Skeletal myoblast transplantation for cardiac repair. Expert Rev Cardiovasc Ther 2:21–28

    Article  PubMed  Google Scholar 

  • Meregalli M, Farini A, Colleoni F, Cassinelli L, Torrente Y (2012) The role of stem cells in muscular dystrophies. Curr Gene Ther 12:192–205

    Article  CAS  PubMed  Google Scholar 

  • Mir LM, Bureau MF, Rangara R, Schwartz B, Scherman D (1998) Long-term, high level in vivo gene expression after electric-pulse-mediated gene transfer into skeletal muscle. C R Acad Sci III Sci Vie 321:893–899

    Article  CAS  Google Scholar 

  • Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, Delaere P, Branellec D, Schwartz B, Scherman D (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA 96:4262–4267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Modlich U, Kustikova OS, Schmidt M, Rudolph C, Meyer J, Li Z, Kamino K, von Neuhoff N, Schlegelberger B, Kuehlcke K, Bunting KD, Schmidt S, Deichmann A, von Kalle C, Fehse B, Baum C (2005) Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 105:4235–4246

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu T, Arakawa S, Fukazawa K, Fujiwara Y, Yoshida T, Sasaki R, Masuda S, Park HM (2001) In vivo gene electroporation in skeletal muscle with special reference to the duration of gene expression. Int J Mol Med 7:37–42

    CAS  PubMed  Google Scholar 

  • Negroni E, Vallese D, Vilquin JT, Butler-Browne G, Mouly V, Trollet C (2011) Current advances in cell therapy strategies for muscular dystrophies. Expert Opin Biol Ther 11:157–176

    Article  PubMed  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J 1:841–845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen LT, Atobe K, Barichello JM, Ishida T, Kiwada H (2007) Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes. Biol Pharm Bull 30:751–757

    Article  CAS  PubMed  Google Scholar 

  • Parker AL, Newman C, Briggs S, Seymour L, Sheridan PJ (2003) Nonviral gene delivery: techniques and implications for molecular medicine. Expert Rev Mol Med 5:1–15

    Article  PubMed  Google Scholar 

  • Pavlin M, Miklavcic D (2003) Effective conductivity of a suspension of permeabilized cells: a theoretical analysis. Biophys J 85:719–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pavlin M, Flisar K, Kanduser M (2010) The role of electrophoresis in gene electrotransfer. J Membr Biol 236:75–79

    Article  CAS  PubMed  Google Scholar 

  • Pavlin M, Pucihar G, Kandušer M (2012) The role of electrically stimulated endocytosis in gene electrotransfer. Bioelectrochemistry 83:38–45

    Article  PubMed  Google Scholar 

  • Pavšelj N, Préat V (2005) DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. J Controlled Release 106:407–415

    Article  Google Scholar 

  • Prud’homme GJ, Glinka Y, Khan AS, Draghia-Akli R (2006) Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr Gene Ther 6:243–273

    Article  PubMed  Google Scholar 

  • Reed SD, Li S (2009) Electroporation advances in large animals. Curr Gene Ther 9:316–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rols M-P, Teissié J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophysical J 75:1415–1423

    Article  CAS  Google Scholar 

  • Skuk D, Goulet M, Tremblay JP (2013) Electroporation as methods to induce myofiber regeneration and increase the engraftment of myogenic cells in skeletal muscles of primates. J Neuropathol Exp Neurol 72:723–734

    Article  CAS  PubMed  Google Scholar 

  • Shirota H, Petrenko L, Hong C, Klinman DM (2007) Potential of transfected muscle cells to contribute to DNA vaccine immunogenicity. J Immunol 179:329–336

    Article  CAS  PubMed  Google Scholar 

  • Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van den Hoff MJ, Moorman AF, Lamers WH (1992) Electroporation in ‘intracellular’ buffer increases cell survival. Nucleic Acids Res 20:2902

    Article  PubMed Central  PubMed  Google Scholar 

  • Vernier PT, Levine ZA, Wu YH, Joubert V, Ziegler MJ, Mir LM, Tieleman DP (2009) Electroporating fields target oxidatively damaged areas in the cell membrane. PLoS One 4:e7966

    Article  PubMed Central  PubMed  Google Scholar 

  • Wells DJ (2004) Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 11:1363–1369

    Article  CAS  PubMed  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

  • Zupanič A, Čorović S, Miklavčič D, Pavlin M (2010) Numerical optimization of gene electrotransfer into muscle tissue. Biomed Eng Online 9:66

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Slovenian Research Agency (Grant No. J4-4324, research programme P3-0043). We gratefully acknowledge help from Zvonka Frelih, Marko Narobe and Romain Teruel.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomaz Mars or Mojca Pavlin.

Additional information

Tomaz Mars and Marusa Strazisar have provided equal contributions to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mars, T., Strazisar, M., Mis, K. et al. Electrotransfection and Lipofection Show Comparable Efficiency for In Vitro Gene Delivery of Primary Human Myoblasts. J Membrane Biol 248, 273–283 (2015). https://doi.org/10.1007/s00232-014-9766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9766-5

Keywords

Navigation