Skip to main content
Log in

Effect of Phloretin on the Binding of 1-Anilino-8-naphtalene sulfonate (ANS) to 1,2-Dimyristoyl-sn-glycero-3-phosphocoline (DMPC) Vesicles in the Gel and Liquid-Crystalline State

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Phloretin is a known modifier of the internal dipole potential of lipid membranes. We studied the interaction of phloretin with model lipid membranes and how it influences the membrane dipole organization using ANS as fluorescent probe. The fluorescence increase observed when ANS binds to DMPC liposomes in gel phase (13 °C) was 2.5 times larger in the presence of phloretin. This effect was due to an increase in ANS affinity, which can be related to the known capability of phloretin in decreasing the dipole potential. Conversely, when the experiments were carried out at 33 °C (liquid crystalline phase), phloretin completely inhibited the increase in ANS fluorescence. In addition, phloretin only affected the electrical properties of the membrane in the gel phase, whereas it modifies structural ones in the liquid-crystalline state. We postulate that phloretin was bound only to the DMPC interface in the gel phase decreasing the surface negative charge density without modifying the structural properties of the ANS binding sites. In the liquid-crystalline phase instead, it increased the accessibility of water to the ANS binding sites decreasing the intrinsic affinity and the fluorescence quantum yield of ANS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  • Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118

    Article  CAS  Google Scholar 

  • Anderson OS, Finkelstein A, Katz I, Cass A (1976) Effect of phloretin on the permeability of lipid membranes. J Gen Physiol 67:749–771

    Article  Google Scholar 

  • Avanti Polar Lipids (2013) http://www.avantilipids.com/index.php?option=com_content&view=article&id=185&Itemid=193

  • Chen PS, Toribara TY, Warner H (1956) Micro determination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  • Chiu VCK, Mouring D, Watson BD, Haynes DH (1980) Measurement of surface potential and surface charge densities of sarcoplasmic reticulum membranes. J Memb Biol 56:121–132

    Article  CAS  Google Scholar 

  • Cseh R, Benz R (1999) Interaction of phloretin with lipid monolayers: relationship between structural changes and dipole potential change. Biophys J 77:1477–1488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cseh R, Hetzer M, Wolf K, Kraus J, Bringmann G, Benz R (2000) Interaction of phloretin with membranes: on the mode of action of phloretin at the water-lipid interface. Eur Biophys J 29:172–183

    Article  CAS  PubMed  Google Scholar 

  • Disalvo EA, Bouchet AM (2014) Electrophoretic mobility and zeta potential of liposomes due to arginine and polyarginine adsorption. Colloids Surf A 444:170–174

    Article  Google Scholar 

  • Efimova SS, Ostroumova OS (2012) Effect of dipole modifiers on the magnitude of the dipole potential of sterol-containing bilayers. Langmuir 28:9908–9914

    Article  CAS  PubMed  Google Scholar 

  • Gains N, Dawson AP (1975) Transmembrane electrophoresis of 8-Anilino-1-naphtalene sulfonate through egg lecithin liposome membranes. J Membr Biol 24:237–248

    Article  CAS  PubMed  Google Scholar 

  • Gibrat R, Romieu C, Grignon C (1983) A procedure for estimating the surface potential of charged and neutral membranes with 8-Anilino-1-naphtalenesulphonate probe. Adequacy of the Guoy-Chapman model. Biochim Biophys Acta 736:196–202

    Article  CAS  PubMed  Google Scholar 

  • Haynes DH (1974) 1-Anilino-8-naphtalenesulfonate: a fluorescent indicator of ion binding and electrostatic potential on the membrane surface. J Membr Biol 17:341–366

    Article  CAS  PubMed  Google Scholar 

  • Haynes DH, Simkowitz P (1977) 1-Anilino-8-Naphtalenesulfonate: a fluorescent probe of ion and ionophore transport kinetics and trans-membrane asymmetry. J Membr Biol 33:63–108

    Article  CAS  PubMed  Google Scholar 

  • Haynes DH, Staerk H (1974) 1-Anilino-8-Naphtalenesulfonate: a Fluorescent Probe of Membrane Surface Structure, Composition and Mobility. J Membr Biol 16:313–340

    Article  Google Scholar 

  • Hess HH, Derr JE (1975) Assay of inorganic and organic phosphorus in the 0.1-5 nanomole range. Anal Biochem 63:607–613

    Article  CAS  PubMed  Google Scholar 

  • Lairion F, Disalvo EA (2004) Effect of phloretin on the dipole potential of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol monolayers. Langmuir 20:9151–9155

    Article  CAS  PubMed  Google Scholar 

  • Lairion F, Disalvo EA (2009) Effect of dipole potential variations on the surface charge potential of lipid membranes. J Phys Chem 113:1607–1614

    Article  CAS  Google Scholar 

  • Maget-Dana R (1999) The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interaction with lipid membranes. Biochim Biophys Acta 1462:109–140

    Article  CAS  PubMed  Google Scholar 

  • Melnik E, Latorre R, Hall JE, Tosteson DC (1977) Phloretin-induced changes in ion transport across lipid membranes. J Gen Physiol 69:243–247

    Article  CAS  PubMed  Google Scholar 

  • Njus D. (2000) Membrane electrostatics, in “Fundamental principles of membrane biophysics”, chapter 4, Department of Biological Sciences, Wayne State University. http://sun.science.wayne.edu/~bio669/Chap04.pdf

  • Ostroumova OS, Efimova SS, Schagina LV (2013) Phloretin-induced reduction in dipole potential of sterol-containing bilayers. J Membr Biol 246:985–991

    Article  CAS  PubMed  Google Scholar 

  • Reyes J, Greco F, Motais R, Latorre R (1983) Phloretin and phloretin analogs: mode of action in planar lipid bilayers and monolayers. J Membr Biol 72:93–103

    Article  CAS  Google Scholar 

  • Robertson DE, Rottenberg H (1983) Membrane potential and surface potential in mitochondria. J Biol Chem 258:11039–11048

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been carried out with grants from CONICET (PIP 0307) and ANPCyT (PICT 2005/38056) to O.A.R. and also with support from the Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. O.A.R. and G.M. are Members of the Carrera del Investigador from CONICET. A.C.C. was Fellow of ANPCyT (FONCyT) and of CONICET. The authors would like to thank E.A. Disalvo for the critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar A. Roveri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutró, A.C., Montich, G. & Roveri, O.A. Effect of Phloretin on the Binding of 1-Anilino-8-naphtalene sulfonate (ANS) to 1,2-Dimyristoyl-sn-glycero-3-phosphocoline (DMPC) Vesicles in the Gel and Liquid-Crystalline State. J Membrane Biol 248, 137–144 (2015). https://doi.org/10.1007/s00232-014-9750-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9750-0

Keywords

Navigation