Skip to main content
Log in

Membrane Steroid Receptor-Mediated Action of Soy Isoflavones: Tip of the Iceberg

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Soy isoflavone’s (genistein and daidzein in particular) biological significance has been thoroughly studied for decades, so we started from the premise that refreshed investigation approach in this field should consider identification of their new molecular targets. In addition to recently described epigenetic aspects of polyphenole action, the cell membrane constituents-mediated effects of soy isoflavones are worthy of special attention. Accordingly, the expanding concept of membrane steroid receptors and rapid signaling from the cell surface may include the prominent role of these steroid-like compounds. It was observed that daidzein strongly interacts with membrane estrogen receptors in adrenal medullary cells. At low doses, daidzein was found to stimulate catecholamine synthesis through extracellular signal-regulated kinase 1/2 or protein kinase A pathways, but at high doses, it inhibited catecholamine synthesis and secretion induced by acetylcholine. Keeping in mind that catecholamine excess can contribute to the cardiovascular pathologies and that catecholamine lack may lead to depression, daidzein application promises to have a wide range of therapeutic effects. On the other hand, it was shown in vitro that genistein inhibits LNCaP prostate cancer cells invasiveness by decreasing the membrane fluidity along with immobilization of the androgen receptor containing membrane lipid rafts, with down regulation of the androgen receptors and Akt signaling. These data are promising in development of the molecular pharmacotherapy pertinent to balanced soy isoflavone treatment of cardiovascular, psychiatric, and steroid-related malignant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adlanmerini M, Solinhac R, Abot A, Fabre A, Raymond-Letron I, Guihot AL, Boudou F, Sautier L, Vessières E, Kim SH, Lière P, Fontaine C, Krust A, Chambon P, Katzenellenbogen JA, Gourdy P, Shaul PW, Henrion D, Arnal JF, Lenfant F (2014) Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc Natl Acad Sci USA 111:E283–E290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ajdžanović V, Spasojević I, Filipović B, Šošić-Jurjević B, Sekulić M, Milošević V (2010) Effects of genistein and daidzein on erythrocyte membrane fluidity: an electron paramagnetic resonance study. Can J Physiol Pharmacol 88:497–500

    Article  PubMed  Google Scholar 

  • Ajdžanović V, Spasojević I, Šošić-Jurjević B, Filipović B, Trifunović S, Sekulić M, Milošević V (2011) The negative effect of soy extract on erythrocyte membrane fluidity: an electron paramagnetic resonance study. J Membr Biol 239:131–135

    Article  PubMed  Google Scholar 

  • Ajdžanović V, Milošević V, Spasojević I (2012) Glucocorticoid excess and disturbed hemodynamics in advanced age: the extent to which soy isoflavones may be beneficial. Gen Physiol Biophys 31:367–374

    Article  PubMed  Google Scholar 

  • Ajdžanović V, Mojić M, Maksimović-Ivanić D, Bulatović M, Mijatović S, Milošević V, Spasojević I (2013) Membrane fluidity, invasiveness and dynamic phenotype of metastatic prostate cancer cells after treatment with soy isoflavones. J Membr Biol 246:307–314

    Article  PubMed  Google Scholar 

  • Ajdžanović V, Medigović I, Pantelić J, Milošević V (2014) Soy isoflavones and cellular mechanics. J Bioenerg Biomembr 46:99–107

    Article  PubMed  Google Scholar 

  • Asnacios A, Hamant O (2012) The mechanics behind cell polarity. Trends Cell Biol 22:584–591

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Beck V, Rohr U, Jungbauer A (2005) Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy? J Steroid Biochem Mol Biol 94:499–518

    Article  CAS  PubMed  Google Scholar 

  • Benten WP, Lieberherr M, Giese G, Wrehlke C, Stamm O, Sekeris CE, Mossmann H, Wunderlich F (1999) Functional testosterone receptors in plasma membranes of T cells. FASEB J 13:123–133

    CAS  PubMed  Google Scholar 

  • Blake C, Fabick KM, Setchell KDR, Lund TD, Lephart ED (2011) Neuromodulation by soy diets or equol: Anti-depressive & anti-obesity-like influences, age- & hormone-dependent effects. BMC Neurosci 12:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cinar B, Mukhopadhyay NK, Meng G, Freeman MR (2007) Phosphoinositide 3-kinase-independent non-genomic signals transit from the androgen receptor to Akt1 in membrane raft microdomains. J Biol Chem 282:29584–29593

    Article  CAS  PubMed  Google Scholar 

  • El Touny LH, Banerjee PP (2007) Akt GSK-3 pathway as a target in genistein induced inhibition of TRAMP prostate cancer progression toward a poorly differentiated phenotype. Carcinogenesis 28:1710–1717

    Article  PubMed  Google Scholar 

  • Esquela-Kercher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  Google Scholar 

  • Falkenstein E, Tillmann HC, Christ M, Feuring M, Wehling M (2000) Multiple actions of steroid hormones—a focus on rapid, nongenomic effects. Pharmacol Rev 52:513–556

    CAS  PubMed  Google Scholar 

  • Filardo E, Quinn J, Pang Y, Graeber C, Shaw S, Dong J, Thomas P (2007) Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane. Endocrinology 148:3236–3245

    Article  CAS  PubMed  Google Scholar 

  • Foradori CD, Weiser MJ, Handa RJ (2008) Non-genomic actions of androgens. Front Neuroendocrinol 29:169–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gatson JW, Kaur P, Singh M (2006) Dihydrotestosterone differentially modulates the mitogen-activated protein kinase and the phosphoinositide 3-kinase/Akt pathways through the nuclear and novel membrane androgen receptor in C6 cells. Endocrinology 147:2028–2034

    Article  CAS  PubMed  Google Scholar 

  • Giguère V, Yang N, Sequi P, Evans RM (1988) Identification of a new class of steroid hormone receptors. Nature 331:91–94

    Article  PubMed  Google Scholar 

  • Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1986) Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150–1154

    Article  CAS  PubMed  Google Scholar 

  • Hammes SR, Levin ER (2011) Minireview: recent advances in extranuclear steroid receptor actions. Endocrinology 152:4489–4495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16:2181–2187

    Article  CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308

    Article  CAS  PubMed  Google Scholar 

  • Jacob J, Sebastian KS, Devassy S, Priyadarsini L, Farook MF, Shameem A, Mathew D, Sreeja S, Thampan RV (2006) Membrane estrogen receptors: genomic actions and post transcriptional regulation. Mol Cell Endocrinol 246:34–41

    Article  CAS  PubMed  Google Scholar 

  • Kalaiselvan V, Kalaivani M, Vijayakumar A, Sureshkumar K, Venkateskumar K (2010) Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacogn Rev 4:111–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kallergi G, Agelaki S, Markomanolaki H, Georgoulias V, Stournaras C (2007) Activation of FAK/PI3K/Rac1 signaling controls actin reorganization and inhibits cell motility in human cancer cells. Cell Physiol Biochem 20:977–986

    Article  CAS  PubMed  Google Scholar 

  • Kampa M, Papakonstanti EA, Hatzoglou A, Stathopoulos EN, Stournaras C, Castanas E (2002) The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors, which increase PSA secretion and modify actin cytoskeleton. FASEB J 16:1429–1431

    CAS  PubMed  Google Scholar 

  • Kampa M, Nifli AP, Charalampopoulos I, Alexaki VI, Theodoropoulos PA, Stathopoulos EN, Gravanis A, Castanas E (2005) Opposing effects of estradiol- and testosterone-membrane binding sites on T47D breast cancer cell apoptosis. Exp Cell Res 307:41–51

    Article  CAS  PubMed  Google Scholar 

  • Kampa M, Kogia C, Theodoropoulos PA, Anezinis P, Charalampopoulos I, Papakonstanti EA, Stathopoulos EN, Hatzoglou A, Stournaras C, Gravanis A, Castanas E (2006) Activation of membrane androgen receptors potentiates the antiproliferative effects of paclitaxel on human prostate cancer cells. Mol Cancer Ther 5:1342–1351

    Article  CAS  PubMed  Google Scholar 

  • Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863–870

    CAS  PubMed  Google Scholar 

  • Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, Singh R, Bhasin S, Jasuja R (2011) The dynamic structure of the estrogen receptor. J Amino Acids 2011:812540

    Article  PubMed Central  PubMed  Google Scholar 

  • Levin ER (2011) Minireview: extranuclear steroid receptors: roles in modulation of cell functions. Mol Endocrinol 25:377–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liao RS, Ma S, Miao L, Li R, Yin Y, Raj GV (2013) Androgen receptor-mediated non-genomic regulation of prostate cancer cell proliferation. Transl Androl Urol 2:187–196

    Google Scholar 

  • Liu M, Yanagihara N, Toyohira Y, Tsutsui M, Ueno S, Shinohara Y (2007) Dual effects of daidzein, a soy isoflavone, on catecholamine synthesis and secretion in cultured bovine adrenal medullary cells. Endocrinology 148:5348–5354

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Le May C, Wong WP, Ward RD, Clegg DJ, Marcelli M, Korach KS, Mauvais-Jarvis F (2009) Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes 58:2292–2302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP (2001) Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem 276:13442–13451

    Article  CAS  PubMed  Google Scholar 

  • Lyng FM, Jones GR, Rommerts FF (2000) Rapid androgen actions on calcium signaling in rat sertoli cells and two human prostatic cell lines: similar biphasic responses between 1 picomolar and 100 nanomolar concentrations. Biol Reprod 63:736–747

    Article  CAS  PubMed  Google Scholar 

  • Madeo A, Maggiolini M (2010) Nuclear alternate estrogen receptor GPR30 mediates 17beta-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res 70:6036–6046

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud AM, Yang W, Bosland MC (2014) Soy isoflavones and prostate cancer: a review of molecular mechanisms. J Steroid Biochem Mol Biol 140:116–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marino M, Pellegrini M, La Rosa P, Acconcia F (2012) Susceptibility of estrogen receptor rapid responses to xenoestrogens: physiological outcomes. Steroids 77:910–917

    Article  CAS  PubMed  Google Scholar 

  • McEwen B (2002) Estrogen actions throughout the brain. Recent Prog Horm Res 57:357–384

    Article  CAS  PubMed  Google Scholar 

  • Milenkovic D, Deval C, Gouranton E, Landrier JF, Scalbert A, Morand C, Mazur A (2012) Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PLoS ONE 7:e29837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milenkovic D, Jude B, Morand C (2013) miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med 64:40–51

    Article  CAS  PubMed  Google Scholar 

  • Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15:563–568

    Article  CAS  PubMed  Google Scholar 

  • Moriarty K, Kim KH, Bender JR (2006) Minireview: estrogen receptor-mediated rapid signaling. Endocrinology 147:5557–5563

    Article  CAS  PubMed  Google Scholar 

  • Nadal A, Rovira JM, Laribi O, Leon-quinto T, Andreu E, Ripoll C, Soria B (1998) Rapid insulinotropic effect of 17beta-estradiol via a plasma membrane receptor. FASEB J 12:1341–1348

    CAS  PubMed  Google Scholar 

  • Norman AW, Mizwicki MT, Norman DP (2004) Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 3:27–41

    Article  CAS  PubMed  Google Scholar 

  • Oh HY, Leem J, Yoon SJ, Yoon S, Hong SJ (2010) Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and down-regulation of androgen receptor. Biochem Biophys Res Commun 393:319–324

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou N, Charalampopoulos I, Anagnostopoulou V, Konstantinidis G, Föller M, Gravanis A, Alevizopoulos K, Lang F, Stournaras C (2008) Membrane androgen receptor activation triggers down-regulation of PI-3K/Akt/NF-kappaB activity and induces apoptotic responses via Bad, FasL and caspase-3 in DU145 prostate cancer cells. Mol Cancer 7:88

    Article  PubMed Central  PubMed  Google Scholar 

  • Papakonstanti EA, Kampa M, Castanas E, Stournaras C (2003) A rapid, nongenomic, signaling pathway regulates the actin reorganization induced by activation of membrane testosterone receptors. Mol Endocrinol 17:870–881

    Article  CAS  PubMed  Google Scholar 

  • Peterziel H, Mink S, Schonert A, Becker M, Klocker H, Cato AC (1999) Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 18:6322–6329

    Article  CAS  PubMed  Google Scholar 

  • Pralle A, Keller P, Florin EL, Simons K, Hörber JK (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148:997–1008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rahman F, Christian HC (2007) Non-classical actions of testosterone: an update. Trends Endocrinol Metab 18:371–378

    Article  CAS  PubMed  Google Scholar 

  • Roepke TA, Ronnekleiv OK, Kelly MJ (2011) Physiological consequences of membrane-initiated estrogen signaling in brain. Front Biosci (Landmark Ed) 16:1560–1573

    Article  PubMed Central  CAS  Google Scholar 

  • Setchell KDR (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutr 68:1333S–1346S

    CAS  PubMed  Google Scholar 

  • Soltysik K, Czekaj P (2013) Membrane estrogen receptors—is it an alternative way of estrogen action? J Physiol Pharmacol 64:129–142

    CAS  PubMed  Google Scholar 

  • Sud N, Wiseman DA, Black SM (2010) Caveolin 1 is required for the activation of endothelial nitric oxide synthase in response to 17beta-estradiol. Mol Endocrinol 24:1637–1649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun YH, Gao X, Tang YJ, Xu CL, Wang LH (2006) Androgens induce increases in intracellular calcium via a G protein-coupled receptor in LNCaP prostate cancer cells. J Androl 27:671–678

    Article  CAS  PubMed  Google Scholar 

  • Tarahovsky YS, Kim YA, Yagolnik EA, Muzafarov EN (2014) Flavonoid-membrane interactions: involvement of flavonoid-metal complexes in raft signaling. BBA Biomembr 1838:1235–1246

    Article  CAS  Google Scholar 

  • Watson CS, Gametchu B (1999) Membrane-initiated steroid actions and the proteins that mediate them. Proc Soc Exp Biol Med 220:9–19

    Article  CAS  PubMed  Google Scholar 

  • Watson CS, Alyea RA, Jeng YJ, Kochukov MY (2007) Nongenomic actions of low concentration estrogens and xenoestrogens on multiple tissues. Mol Cell Endocrinol 274:1–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Westfall TC, Westfall DP (2005) Adrenergic agonists and antagonists. In: Brunton LL, Lazo JS, Parker KL (eds) Goodman, Gilman the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York, pp 237–295

    Google Scholar 

  • Xie H, Sun M, Liao XB, Yuan LQ, Sheng ZF, Meng JC, Wang D, Yu ZY, Zhang LY, Zhou HD, Luo XH, Li H, Wu XP, Wei QY, Tang SY, Wang ZY, Liao EY (2011) Estrogen receptor α36 mediates a bone-sparing effect of 17β-estradiol in postmenopausal women. J Bone Miner Res 26:156–168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yanagihara N, Liu M, Toyohira Y, Tsutsui M, Ueno S, Shinohara Y, Takahashi K, Tanaka K (2006) Stimulation of catecholamine synthesis through unique estrogen receptors in the bovine adrenomedullary plasma membrane by 17β-estradiol. Biochem Biophys Res Commun 339:548–553

    Article  CAS  PubMed  Google Scholar 

  • Yanagihara N, Toyohira Y, Shinohara Y (2008) Insights into the pharmacological potential of estrogens and phytoestrogens on catecholamine signaling. Ann NY Acad Sci 1129:96–104

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Akishita M, Eto M, Koizumi H, Hashimoto R, Ogawa S, Tanaka K, Ouchi Y, Okabe T (2012) Src kinase-mediates androgen receptor-dependent non-genomic activation of signaling cascade leading to endothelial nitric oxide synthase. Biochem Biophys Res Commun 424:538–543

    Article  CAS  PubMed  Google Scholar 

  • Zicha J, Kunes J, Devynck MA (1999) Abnormalities of membrane function and lipid metabolism in hypertension. Am J Hypertens 12:315–331

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science, Education and Technological Development of the Republic of Serbia, Grant number 173009. We wish to express our gratitude to Ivan Spasojević PhD, Life Systems Department, Institute for Multidisciplinary Research, Belgrade, Serbia for the valuable assistance during manuscript preparation.

Conflict of interest

Vladimir Ajdžanović, Ivana Medigović, Jasmina Živanović, Marija Mojić and Verica Milošević declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ajdžanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajdžanović, V., Medigović, I., Živanović, J. et al. Membrane Steroid Receptor-Mediated Action of Soy Isoflavones: Tip of the Iceberg. J Membrane Biol 248, 1–6 (2015). https://doi.org/10.1007/s00232-014-9745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9745-x

Keywords

Navigation