Skip to main content
Log in

Membrane Permeability Transition and Dysfunction of Rice Mitochondria Effected by Er(III)

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Herein, the biological effects of heavy rare earth ion Er(III) on rice mitochondria were comprehensively investigated mainly by spectroscopic methods. The experimental results demonstrated that Er(III) could lead to the swelling of rice mitochondria, collapse of mitochondrial transmembrane potential, decrease of membrane fluidity, promotion of H+ permeability and suppression of K+ permeability. These further indicated that Er(III) could induce the mitochondrial permeability transition (MPT) and the dysfunction of rice mitochondria. The ultra-structure change of mitochondria observed by transmission electron microscopy (TEM) also proved that Er(III) induced MPT. Moreover, the testing results of the protective effect of four different agents on mitochondrial swelling implied that the thiol chelation on the mitochondrial inner membrane was the main reason that caused the MPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol 291(5):2067–2074

    Google Scholar 

  • Arpagaus S, Rawyler A, Braendle R (2002) Occurrence and characteristics of the mitochondrial permeability transition in plants. J Biol Chem 277(3):1780–1787

    Article  CAS  PubMed  Google Scholar 

  • Atwood DA (ed) (2013) The rare earth elements: fundamentals and applications. Wiley, Chichester

    Google Scholar 

  • Buckingham S, Maheswaran J, Meehan B, Peverill K (1999) The role of applications of rare earth elements in enhancement of cropand pasture production. Mater Sci Forum 315:339–347

    Article  Google Scholar 

  • Costa ADT, Quinlan CL, Andrukhiv A, West IC, Jabůrek M, Garlid KD (2006) The direct physiological effects of mitoKATP opening on heart mitochondria. Am J Physiol Heart Circ Physiol 290(1):406–415

    Article  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Lisa F, Bernardi P (2006) Mitochondria and ischemia–reperfusion injury of the heart fixing a hole. Cardiovasc Res 70(2):191–199

    Article  PubMed  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (1995a) Rare earth elements and plant growth: I. Effects of lanthanum and cerium on root elongation of corn and mungbean. J Plant Nutr 18(10):1963–1976

    Article  CAS  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (1995b) Rare earth elements and plant growth: II. Responses of corn and mungbean to low concentrations of lanthanum in dilute, continuously flowing nutrient solutions. J Plant Nutr 18(10):1977–1989

    Article  CAS  Google Scholar 

  • Diatloff E, Smith FW, Asher CJ (1995c) Rare earth elements and plant growth: III. Responses of corn and mungbean to low concentrations of cerium in dilute, continuously flowing nutrient solutions. J Plant Nutr 18(10):1991–2003

    Article  CAS  Google Scholar 

  • Emsley J (2011) Nature’s building blocks: an AZ guide to the elements. Oxford University Press, New York

    Google Scholar 

  • Ferguson-Miller S, Sorgato M (1982) Proton electrochemical gradients and energy-transduction processes. Annu Rev Biochem 51(1):185–217

    Article  Google Scholar 

  • Fernandes MA, Custódio J, Santos MS, Moreno AJ, Vicente JA (2006) Tetrandrine concentrations not affecting oxidative phosphorylation protect rat liver mitochondria from oxidative stress. Mitochondria 6(4):176–185

    Article  CAS  Google Scholar 

  • Garlid KD, Paucek P (2003) Mitochondrial potassium transport: the K+ cycle. Biochim Biophys Acta 1606(1):23–41

    Article  CAS  PubMed  Google Scholar 

  • Gerencser AA, Doczi J, Töröcsik B, Bossy-Wetzel E, Adam-Vizi V (2008) Mitochondrial swelling measurement in situ by optimized spatial filtering: astrocyte-neuron differences. J Biophys 95(5):2583–2598

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Bioenerg Biomembr 177:751–766

    CAS  Google Scholar 

  • Gzyl J, Przymusiński R, Gwóźdź EA (2009) Ultrastructure analysis of cadmium-tolerant and -sensitive cell lines of cucumber (Cucumis sativus L.). Plant Cell Tiss Organ Cult 99(2):227–232

    Article  CAS  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 61(3):372–385

    Article  CAS  PubMed  Google Scholar 

  • Haworth RA, Hunter DR (2000) Control of the mitochondrial permeability transition pore by high-affinity ADP binding at the ADP/ATP translocase in permeabilized mitochondria. J Bioenerg Biomembr 32(1):91–96

    Article  CAS  PubMed  Google Scholar 

  • Haynes WM, Lide, Bruno TJ (eds) (2012) CRC handbook of chemistry and physics 2012–2013. CRC Press, Boca Raton

    Google Scholar 

  • Hu X, Ding Z, Chen Y, Wang X, Dai L (2002) Bioaccumulation of lanthanum and cerium and their effects on the growth of wheat (Triticum aestivum L.) seedlings. Chemosphere 48(6):621–629

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang XR, Wang C (2006) Bioaccumulation of lanthanum and its effect on growth of maize seedlings in a red loamy soil. Pedosphere 16(6):799–805

    Article  CAS  Google Scholar 

  • Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778(10):1978–2021

    Article  CAS  PubMed  Google Scholar 

  • Kosower NS, Kosower EM, Newton GL, Ranney HM (1979) Bimane fluorescent labels: labeling of normal human red cells under physiological conditions. Proc Natl Acad Sci 76(7):3382–3386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum, London

    Book  Google Scholar 

  • Li Y, Yang JL, Jiang Y (2012) Trace rare earth element detection in food and agricultural products based on flow injection walnut shell packed microcolumn preconcentration coupled with inductively coupled plasma mass spectrometry. J Agric Food Chem 60(12):3033–3041

    Article  CAS  PubMed  Google Scholar 

  • Logan DC (2006) Plant mitochondrial dynamics. Biochim Biophy Acta 1763(5):430–441

    Article  CAS  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279

    Article  CAS  PubMed  Google Scholar 

  • Majima E, Ikawa K, Takeda M, Hashimoto M, Shinohara Y, Terada H (1995) Translocation of loops regulates transport activity of mitochondrial ADP/ATP carrier deduced from formation of a specific intermolecular disulfide bridge catalyzed by copper-o-phenanthroline. J Biol Chem 270(49):29548–29554

    Article  CAS  PubMed  Google Scholar 

  • Pacelli C, Latorre D, Cocco T, Capuano F, Kukat C, Seibel P, Villani G (2011) Tight control of mitochondrial membrane potential by cytochrome c oxidase. Mitochondrion 11(2):334–341

    Article  CAS  PubMed  Google Scholar 

  • Parish TA, Khromov VV, Carron I (eds) (1999) Safety issues associated with plutonium involvement in the nuclear fuel cycle, vol 23. Springer, Berlin

  • Ricchelli F, Gobbo S, Jori G, Jori G, Salet C, Moreno G (1995) Temperature-induced changes in fluorescence properties as a probe of porphyrin microenvironment in lipid membranes. Eur J Biochem 233(1):165–170

    Article  CAS  PubMed  Google Scholar 

  • Ricchelli F, Gobbo S, Moreno G, Moreno G, Salet C (1999) Changes of the fluidity of mitochondrial membranes induced by the permeability transition. Biochemistry 38(29):9295–9300

    Article  CAS  PubMed  Google Scholar 

  • Ricchelli F, Dabbeni-Sala F, Petronilli V, Bernardi P, Hopkins B, Bova S (2005) Species-specific modulation of the mitochondrial permeability transition by norbormide. Biochim Biophys Acta 1708(2):178–186

    Article  CAS  PubMed  Google Scholar 

  • Tang XH, Gao J, Chen J, Fang F, Wang Y, Dou H, Xu Q, Qian Z (2005) Inhibition of ursolic acid on calcium-induced mitochondrial permeability transition and release of two pro apoptotic proteins. Biochem Biophys Res Commun 337(1):320–324

    Article  CAS  PubMed  Google Scholar 

  • Tyler G (2004) Rare earth elements in soil and plant systems. Plant Soil 267(1–2):191–206

    Article  CAS  Google Scholar 

  • Vercesi AE, Bernardes CF, Hoffmann ME, Gadelha FR, Docampo R (1991) Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J Biol Chem 266(22):14431–14434

    CAS  PubMed  Google Scholar 

  • Vicente JAF, Santos MS, Vercesi AE, Madeira VMC (1998) Comparative effects of the herbicide dinitro-o-cresol on mitochondrial bioenergetics. Pesti Sci 54(1):43–51

    Article  CAS  Google Scholar 

  • Xia CF, Zhao J, Jin JC, Yuan L, Chen XY, Peng W, Jiang FL, Qin CQ, Dai J, Liu Y (2013) Ce(III)-induced rice mitochondrial permeability transition investigated by spectroscopic and microscopic studies. Biol Trace Elem Res 152(2):284–291

    Article  CAS  PubMed  Google Scholar 

  • Xiong TC, Jauneau A, Ranjeva R, Mazars C (2004) Isolated plant nuclei as mechanical and thermal sensors involved in calcium signalling. Plant J 40(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li JH, Liu XR, Jiang FL, Tian FF, Liu Y (2011) Spectroscopic and microscopic studies on the mechanisms of mitochondrial toxicity induced by different concentrations of cadmium. J Membr Biol 241(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Jin JC, Zhou ZQ, Xia CF, Yang XG, Jiang FL, Dai J, Liu Y (2013) High concentration of gadolinium ion modifying isolated rice mitochondrial biogenesis. Biol Trace Elem Res 156(1–3):308–315

    Article  CAS  PubMed  Google Scholar 

  • Zhu YS, Xu HB, Huang KX (2002) Mitochondrial permeability transition and cytochrome c release induced by selenite. J Inorg Biochem 90(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Zischka H, Larochette N, Hoffmann F, Hamöller D, Jägemann N, Lichtmannegger J, Jennen L, Müller-Höcker J, Roggel F, Göttlicher M, Vollmar AM, Kroemer G (2008) Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition. Anal Chem 80(13):5051–5058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (21173026, 21225313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Jl., Wu, M., Wang, X. et al. Membrane Permeability Transition and Dysfunction of Rice Mitochondria Effected by Er(III). J Membrane Biol 248, 39–46 (2015). https://doi.org/10.1007/s00232-014-9730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9730-4

Keywords

Navigation