Skip to main content
Log in

Amphipols and Photosynthetic Light-Harvesting Pigment-Protein Complexes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The trimeric light-harvesting complexes II (LHCII) of plants and green algae are pigment-protein complexes involved in light harvesting and photoprotection. Different conformational states have been proposed to be responsible for their different functions. At present, detergent-solubilized LHCII is used as a model for the “light-harvesting conformation”, whereas the “quenched conformation” is mimicked by LHCII aggregates. However, none of these conditions seem to perfectly reproduce the properties of LHCII in vivo. In addition, several monomeric LHC complexes are not fully stable in detergent. There is thus a need to find conditions that allow analyzing LHCs in vitro in stable and, hopefully, more native-like conformations. Here, we report a study of LHCII, the major antenna complex of plants, in complex with amphipols. We have trapped trimeric LHCII and monomeric Lhcb1 with either polyanionic or non-ionic amphipols and studied the effect of these polymers on the properties of the complexes. We show that, as compared to detergent solutions, amphipols have a stabilizing effect on LHCII. We also show that the average fluorescence lifetime of LHCII trapped in an anionic amphipol is ~30 % shorter than in α-dodecylmaltoside, due to the presence of a conformation with 230-ps lifetime that is not present in detergent solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A8-35:

A specific type of polyacrylate-based amphipol

AIBN:

Azobisisobutyronitrile

APol:

Amphipol

BR:

Bacteriorhodopsin

Car:

Carotenoid

CD:

Circular dichroism

Chl:

Chlorophyll

LHCII:

LHCII trimers

α-DDM:

N-dodecyl-α-d-maltoside

β-DDM:

N-dodecyl-β-d-maltoside

MD:

Molecular dynamics

MP:

Membrane protein

NA13:

A specific batch of non-ionic APol

NAPol:

Non-ionic APol

NPQ:

Non-photochemical quenching

SEC:

Size exclusion chromatography

TR:

Thiol-based transfer agent

References

  • Althoff T, Mills DJ, Popot J-L, Kühlbrandt W (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664

    Article  CAS  Google Scholar 

  • Ballottari M, Girardon J, Dall’Osto L, Bassi R (2012) Evolution and functional properties of Photosystem II light harvesting complexes in eukaryotes. Biochim Biophys Acta 1817:143–157

    Article  CAS  Google Scholar 

  • Barros T, Royant A, Standfuss J, Dreuw A, Kühlbrandt W (2009) Crystal structure of plant light-harvesting complex shows the active, energy-transmitting state. EMBO J 28:298–306

    Article  CAS  Google Scholar 

  • Bassi R, Simpson D (1987) Chlorophyll-protein complexes of barley photosystem-I. Eur J Biochem 163:221–230

    Article  CAS  Google Scholar 

  • Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères J-L, Durand G, Zito F, Pucci B, Popot J-L (2012) Non-ionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution NMR. Biochemistry 51:1416–1430

    Article  CAS  Google Scholar 

  • Belgio E, Johnson MP, Jurić S, Ruban AV (2012) Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Biophys J 102:2761–2771

    Article  CAS  Google Scholar 

  • Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402

    Article  CAS  Google Scholar 

  • Breyton C, Tribet C, Olive J, Dubacq J-P, Popot J-L (1997) Dimer to monomer conversion of the cytochrome b6 f complex: causes and consequences. J Biol Chem 272:21892–21900

    Article  CAS  Google Scholar 

  • Caffarri S, Croce R, Cattivelli L, Bassi R (2004) A look within LHCII: differential analysis of the Lhcbl-3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43:9467–9476

    Article  CAS  Google Scholar 

  • Caffarri S, Passarini F, Bassi R, Croce R (2007) A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II. FEBS Lett 581:4704–4710

    Article  CAS  Google Scholar 

  • Croce R, Zucchelli G, Garlaschi FM, Bassi R, Jennings RC (1996) Excited state equilibration in the photosystem I light-harvesting I complex: P700 is almost isoenergetic with its antenna. Biochemistry 35:8572–8579

    Article  CAS  Google Scholar 

  • Croce R, Remelli R, Varotto C, Breton J, Bassi R (1999a) The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants. FEBS Lett 456:1–6

    Article  CAS  Google Scholar 

  • Croce R, Weiss S, Bassi R (1999b) Carotenoid-binding sites of the major light-harvesting complex II of higher plants. J Biol Chem 274:29613–29623

    Article  CAS  Google Scholar 

  • Croce R, Canino G, Ros F, Bassi R (2002) Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry 41:7334–7343

    Article  CAS  Google Scholar 

  • Croce R, van Amerongen H (2011) Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J Photochem Photobiol, B 104:142–153

    Article  CAS  Google Scholar 

  • Dahmane T, Giusti F, Catoire LJ, Popot J-L (2011) Sulfonated amphipols: synthesis, properties and applications. Biopolymers 95:811–823

    Article  CAS  Google Scholar 

  • Dahmane T, Rappaport F, Popot J-L (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence or absence of lipids: functional consequences. Eur Biophys J 42:85–101

    Article  CAS  Google Scholar 

  • Diab C, Tribet C, Gohon Y, Popot J-L, Winnik FM (2007) Complexation of integral membrane proteins by phosphorylcholine-based amphipols. Biochim Biophys Acta 1768:2737–2747

    Article  CAS  Google Scholar 

  • Dobrikova AG, Várkonyi Z, Krumova SB, Kovács L, Kostov GK, Todinova SJ, Busheva MC, Taneva SG, Garab G (2003) Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Biochemistry 42:11272–11280

    Article  CAS  Google Scholar 

  • Etzkorn M, Zoonens M, Catoire LJ, Popot J-L, Hiller S (2014) How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol. doi:10.1007/s00232-014-9657-9

    Article  CAS  Google Scholar 

  • Feinstein HE, Tifrea D, Sun G, Popot J-L, de la Maza LM, Cocco MJ (2014) Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis. J Membr Biol. doi:10.1007/s00232-014-9693-5

    Article  CAS  Google Scholar 

  • Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406

    Article  CAS  Google Scholar 

  • Georgakopoulou S, van der Zwan G, Bassi R, van Grondelle R, van Amerongen H, Croce R (2007) Understanding the changes in the circular dichroism of light harvesting complex II upon varying its pigment composition and organization. Biochemistry 46:4745–4754

    Article  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1991) Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol 96:635–643

    Article  CAS  Google Scholar 

  • Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380

    Article  CAS  Google Scholar 

  • Giusti F, Rieger J, Catoire L, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot J-L (2014) Synthesis, characterization and applications of a perdeuterated amphipol. J Membr Biol. doi:10.1007/s00232-014-9656-x

    Article  CAS  Google Scholar 

  • Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290

    Article  CAS  Google Scholar 

  • Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537

    Article  CAS  Google Scholar 

  • Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–240

    Article  CAS  Google Scholar 

  • Johnson MP, Ruban AV (2009) Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII). J Biol Chem 284:23592–23601

    Article  CAS  Google Scholar 

  • Kleinschmidt JH, Popot J-L (2014) Folding and stability of integral membrane proteins in amphipols (submitted).

    Article  CAS  Google Scholar 

  • Lambrev PH, Várkonyi Z, Krumova S, Kovács L, Miloslavina Y, Holzwarth AR, Garab G (2007) Importance of trimer–trimer interactions for the native state of the plant light-harvesting complex II. Biochim Biophys Acta 1767:847–853

    Article  CAS  Google Scholar 

  • Levi V, Rossi JP, Echarte MM, Castello PR, Gonzalez Flecha FL (2000) Thermal stability of the plasma membrane calcium pump. Quantitative analysis of its dependence on lipid-protein interactions. J Membr Biol 173:215–225

    Article  CAS  Google Scholar 

  • Liao M, Cao E, Julius D, Cheng Y (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr Opin Struct Biol 27:1–7

    Article  CAS  Google Scholar 

  • Liguori N, Roy LM, Opačić M, Durand G, Croce R (2013) Regulation of light-harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. J Am Chem Soc 135:18339–18342

    Article  CAS  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  CAS  Google Scholar 

  • Lund S, Orlowski S, de Foresta B, Champeil P, le Maire M, Møller JV (1989) Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem 264:4907–4915

    CAS  PubMed  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    Article  CAS  Google Scholar 

  • Morosinotto T, Mozzo M, Bassi R, Croce R (2005) Pigment-pigment interactions in Lhca4 antenna complex of higher plants photosystem I. J Biol Chem 280:20612–20619

    Article  CAS  Google Scholar 

  • Moya I, Silvestri M, Vallon O, Cinque G, Bassi R (2001) Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40:12552–12561

    Article  CAS  Google Scholar 

  • Mozzo M, Morosinotto T, Bassi R, Croce R (2006) Probing the structure of Lhca3 by mutation analysis. Biochim Biophys Acta 1757:1607–1613

    Article  CAS  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  Google Scholar 

  • Nagy JK, Kuhn Hoffmann A, Keyes MH, Gray DN, Oxenoid K, Sanders CR (2001) Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett 501:115–120

    Article  CAS  Google Scholar 

  • Natali A, Roy LM, Croce R (2014) In vitro reconstitution of light-harvesting complexes of plants and green algae. J Vis Exp. doi:10.3791/51852

  • Pandit A, Shirzad-Wasei N, Wlodarczyk LM, van Roon H, Boekema EJ, Dekker JP, de Grip WJ (2011) Assembly of the major light-harvesting complex II in lipid nanodiscs. Biophys J 101:2507–2515

    Article  CAS  Google Scholar 

  • Pascal AA, Liu ZF, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang WR, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137

    Article  CAS  Google Scholar 

  • Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi:10.1007/s00232-014-9690-8

    Article  CAS  Google Scholar 

  • Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot J-L, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869

    Article  CAS  Google Scholar 

  • Polovinkin V, Gushchin I, Balandin T, Chervakov P, Round E, Schevchenko V, Popov A, Borshchevskiy V, Popot J-L, Gordeliy V (2014) High-resolution structure of a membrane protein transferred from amphipol to a lipidic mesophase. J Membr Biol. doi:10.1007/s00232-014-9700-x

    Article  CAS  Google Scholar 

  • Popot J-L (2010) Amphipols, nanodiscs, and fluorinated surfactants: three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775

    Article  CAS  Google Scholar 

  • Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Rappaport F, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408

    Article  CAS  Google Scholar 

  • Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397

    Article  Google Scholar 

  • Rosenbusch JP (2001) Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. J Struct Biol 136:144–157

    Article  CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    Article  CAS  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  Google Scholar 

  • Sharma KS, Durand G, Pucci B (2011) Synthesis and determination of polymerization rate constants of glucose-based monomers. Des Monomers Polym 14:499–513

    Article  CAS  Google Scholar 

  • Sharma KS, Durand G, Gabel F, Bazzacco P, Le Bon C, Billon-Denis E, Catoire LJ, Popot J-L, Ebel C, Pucci B (2012) Non-ionic amphiphilic homopolymers: synthesis, solution properties, and biochemical validation. Langmuir 28:4625–4639

    Article  CAS  Google Scholar 

  • Tifrea D, Pal S, Cocco MJ, Popot J-L, de la Maza LM (2014) Increased immuno accessibility of MOMP epitopes in a vaccine formulated with amphipols may account for the very robust protection elicited against a vaginal challenge with C. muridarum. J Immunol 192:5201–5213

    Article  CAS  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050

    Article  CAS  Google Scholar 

  • Tribet C, Audebert R, Popot J-L (1997) Stabilization of hydrophobic colloidal dispersions in water with amphiphilic polymers: application to integral membrane proteins. Langmuir 13:5570–5576

    Article  CAS  Google Scholar 

  • Tribet C, Diab C, Dahmane T, Zoonens M, Popot J-L, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634

    Article  CAS  Google Scholar 

  • van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007) Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett 581:3528–3532

    Article  Google Scholar 

  • van Oort B, Amunts A, Borst JW, van Hoek A, Nelson N, van Amerongen H, Croce R (2008) Picosecond fluorescence of intact and dissolved PSI-LHCI crystals. Biophys J 95:5851–5861

    Article  Google Scholar 

  • Wientjes E, Oostergetel GT, Jansson S, Boekema EJ, Croce R (2009) The role of Lhca complexes in the supramolecular organization of higher plant photosystem I. J Biol Chem 284:7803–7810

    Article  CAS  Google Scholar 

  • Wientjes E, van Amerongen H, Croce R (2013) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta 1827:420–426

    Article  CAS  Google Scholar 

  • Zoonens M, Giusti F, Zito F, Popot J-L (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer. Implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404

    Article  CAS  Google Scholar 

  • Zoonens M, Popot J-L (2014) Amphipols for each season. J Membr Biol. doi:10.1007/s00232-014-9666-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Particular thanks are due to Roberta Croce (VU University Amsterdam) for her support and help throughout this work, as well as for contributing to its writing. We also thank Laura M. Roy and Bart Sasbrink (VU University Amsterdam) for critical reading of the manuscript, and Pengqi Xu for his help with generating Fig. 7. This project was supported by the Chemical Science division of the Netherlands organization for scientific research (NWO-CW) via an ECHO grant to R. Croce, by the CNRS, by University Paris-7, and by the “Initiative d’Excellence” program from the French State (Grant “DYNAMO”, ANR-11-LABX-0011-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Opačić.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary information: Scheme of NA13 synthesis; size exclusion chromato-gra-phy profiles of A8-35-trapped Lcb1 and of Lhcb1 in α-DDM; fluorescence emission spectra of A8-35- and NA13-trapped LHCII and of LHCII kept in α-DDM; sucrose gradients analysis of LHCII trimers either NA13-trapped or kept in α-DDM, at pH 5.5, 6.5 and 7.6.

Supplementary material 1 (DOCX 2361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opačić, M., Durand, G., Bosco, M. et al. Amphipols and Photosynthetic Light-Harvesting Pigment-Protein Complexes. J Membrane Biol 247, 1031–1041 (2014). https://doi.org/10.1007/s00232-014-9712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9712-6

Keywords

Navigation