Skip to main content
Log in

Downregulation of Chloride Channel ClC-2 by Janus Kinase 3

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Janus kinase-3 (JAK3) fosters proliferation and counteracts apoptosis of lymphocytes and tumor cells. The gain of function mutation A572VJAK3 has been discovered in acute megakaryoplastic leukemia. JAK3 is inactivated by replacement of lysine by alanine in the catalytic subunit (K855AJAK3). Regulation of cell proliferation and apoptosis involves altered activity of Cl channels. The present study, thus, explored whether JAK3 modifies the function of the small conductance Cl channel ClC-2. To this end, ClC-2 was expressed in Xenopus oocytes with or without wild-type JAK3, A568VJAK3 or K851AJAK3, and the Cl channel activity determined by dual-electrode voltage clamp. Channel protein abundance in the cell membrane was determined utilizing chemiluminescence. As a result, expression of ClC-2 was followed by a marked increase of cell membrane conductance. The conductance was significantly decreased following coexpression of JAK3 or A568VJAK3, but not by coexpression of K851AJAK3. Exposure of the oocytes expressing ClC-2 together with A568VJAK3 to the JAK3 inhibitor WHI-P154 (4-[(3’-bromo-4’-hydroxyphenyl)amino]-6,7-dimethoxyquinazoline, 22 μM) increased the conductance. Coexpression of A568VJAK3 decreased the ClC-2 protein abundance in the cell membrane of ClC-2 expressing oocytes. The decline of conductance in ClC-2 and A568VJAK3 coexpressing oocytes following inhibition of channel protein insertion by brefeldin A (5 μM) was similar in oocytes expressing ClC-2 with A568VJAK3 and oocytes expressing ClC-2 alone, indicating that A568VJAK3 might slow channel protein insertion into rather than accelerating channel protein retrieval from the cell membrane. In conclusion, JAK3 downregulates ClC-2 activity and thus counteracts Cl exit—an effect possibly influencing cell proliferation and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alesutan I, Sopjani M, Dermaku-Sopjani M, Munoz C, Voelkl J, Lang F (2012) Upregulation of Na-coupled glucose transporter SGLT1 by Tau tubulin kinase 2. Cell Physiol Biochem 30(2):458–465. doi:10.1159/000339039

    Article  CAS  PubMed  Google Scholar 

  • Almilaji A, Munoz C, Hosseinzadeh Z, Lang F (2013a) Upregulation of Na+, Cl(−)-coupled betaine/gamma-amino-butyric acid transporter BGT1 by Tau tubulin kinase 2. Cell Physiol Biochem 32(2):334–343. doi:10.1159/000354441

    Article  CAS  PubMed  Google Scholar 

  • Almilaji A, Szteyn K, Fein E, Pakladok T, Munoz C, Elvira B, Towhid ST, Alesutan I, Shumilina E, Bock CT, Kandolf R, Lang F (2013b) Down-regulation of Na/K+atpase activity by human parvovirus B19 capsid protein VP1. Cell Physiol Biochem 31(4–5):638–648. doi:10.1159/000350083

    Article  CAS  PubMed  Google Scholar 

  • Blaisdell CJ, Edmonds RD, Wang XT, Guggino S, Zeitlin PL (2000) pH-regulated chloride secretion in fetal lung epithelia. Am J Physiol Lung Cell Mol Physiol 278:L1248–L1255

    CAS  PubMed  Google Scholar 

  • Bogatikov E, Munoz C, Pakladok T, Alesutan I, Shojaiefard M, Seebohm G, Foller M, Palmada M, Bohmer C, Broer S, Lang F (2012) Up-regulation of amino acid transporter SLC6A19 activity and surface protein abundance by PKB/Akt and PIKfyve. Cell Physiol Biochem 30(6):1538–1546. doi:10.1159/000343341

    Article  CAS  PubMed  Google Scholar 

  • Bosl MR, Stein V, Hubner C, Zdebik AA, Jordt SE, Mukhopadhyay AK, Davidoff MS, Holstein AF, Jentsch TJ (2001) Male germ cells and photoreceptors, both dependent on close cell–cell interactions, degenerate upon ClC-2 Cl(−) channel disruption. EMBO J 20(6):1289–1299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broer S, Broer A, Hamprecht B (1994) Expression of Na+-independent isoleucine transport activity from rat brain in Xenopus laevis oocytes. Biochim Biophys Acta 1192(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Cornejo MG, Boggon TJ, Mercher T (2009) JAK3: a two-faced player in hematological disorders. Int J Biochem Cell Biol 41(12):2376–2379. doi:10.1016/j.biocel.2009.09.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Totero D, Meazza R, Capaia M, Fabbi M, Azzarone B, Balleari E, Gobbi M, Cutrona G, Ferrarini M, Ferrini S (2008) The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways. Blood 111(2):517–524. doi:10.1182/blood-2007-04-087882

    Article  PubMed  Google Scholar 

  • Elinder F, Akanda N, Tofighi R, Shimizu S, Tsujimoto Y, Orrenius S, Ceccatelli S (2005) Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ 12(8):1134–1140

    Article  CAS  PubMed  Google Scholar 

  • Fainstein N, Vaknin I, Einstein O, Zisman P, Ben Sasson SZ, Baniyash M, Ben-Hur T (2008) Neural precursor cells inhibit multiple inflammatory signals. Mol Cell Neurosci 39(3):335–341. doi:10.1016/j.mcn.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Ogura T, Katayama Y, Hiraoka M (1998) Characteristics of rabbit ClC-2 current expressed in Xenopus oocytes and its contribution to volume regulation. Am J Physiol 274(2 Pt 1):C500–C512

    CAS  PubMed  Google Scholar 

  • Ghoreschi K, Laurence A, O’Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228(1):273–287. doi:10.1111/j.1600-065X.2008.00754.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grunder S, Thiemann A, Pusch M, Jentsch TJ (1992) Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360(6406):759–762

    Article  CAS  PubMed  Google Scholar 

  • Haan C, Rolvering C, Raulf F, Kapp M, Druckes P, Thoma G, Behrmann I, Zerwes HG (2011) Jak1 has a dominant role over Jak3 in signal transduction through gamma c-containing cytokine receptors. Chem Biol 18(3):314–323. doi:10.1016/j.chembiol.2011.01.012

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Lang F (2012a) Down-regulation of the myoinositol transporter SMIT by JAK2. Cell Physiol Biochem 30(6):1473–1480. doi:10.1159/000343335

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Bhavsar SK, Lang F (2012b) Downregulation of ClC-2 by JAK2. Cell Physiol Biochem 29(5–6):737–742. doi:10.1159/000178560

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Dong L, Bhavsar SK, Warsi J, Almilaji A, Lang F (2013a) Upregulation of peptide transporters PEPT1 and PEPT2 by Janus kinase JAK2. Cell Physiol Biochem 31(4–5):673–682. doi:10.1159/000350086

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh Z, Sopjani M, Pakladok T, Bhavsar SK, Lang F (2013b) Downregulation of KCNQ4 by Janus kinase 2. J Membr Biol 246(4):335–341. doi:10.1007/s00232-013-9537-8

    Article  CAS  PubMed  Google Scholar 

  • Imada K, Leonard WJ (2000) The Jak-STAT pathway. Mol Immunol 37(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  • Jentsch TJ, Gunther W, Pusch M, Schwappach B (1995) Properties of voltage-gated chloride channels of the ClC gene family. J Physiol 482:19S–25S

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim BH, Oh SR, Yin CH, Lee S, Kim EA, Kim MS, Sandoval C, Jayabose S, Bach EA, Lee HK, Baeg GH (2010) MS-1020 is a novel small molecule that selectively inhibits JAK3 activity. Br J Haematol 148(1):132–143. doi:10.1111/j.1365-2141.2009.07925.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kowalczuk S, Broer A, Tietze N, Vanslambrouck JM, Rasko JE, Broer S (2008) A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J 22(8):2880–2887

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Busch GL, Volkl H (1998) The diversity of volume regulatory mechanisms. Cell Physiol Biochem 8(1–2):1–45

    Article  CAS  PubMed  Google Scholar 

  • Lang F, Shumilina E, Ritter M, Gulbins E, Vereninov A, Huber SM (2006) Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. ContribNephrol 152:142–160

    CAS  Google Scholar 

  • Lang F, Foller M, Lang K, Lang P, Ritter M, Vereninov A, Szabo I, Huber SM, Gulbins E (2007) Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol 428:209–225. doi:10.1016/S0076-6879(07)28011-5

    Article  PubMed  Google Scholar 

  • Macri P, Breton S, Marsolais M, Lapointe J, Laprade R (1997) Hypertonicity decreases basolateral K+ and Cl conductances in rabbit proximal convoluted tubule. J Membr Biol 155(3):229–237

    Article  CAS  PubMed  Google Scholar 

  • Malinge S, Ragu C, Della-Valle V, Pisani D, Constantinescu SN, Perez C, Villeval JL, Reinhardt D, Landman-Parker J, Michaux L, Dastugue N, Baruchel A, Vainchenker W, Bourquin JP, Penard-Lacronique V, Bernard OA (2008) Activating mutations in human acute megakaryoblastic leukemia. Blood 112(10):4220–4226. doi:10.1182/blood-2008-01-136366

    Article  CAS  PubMed  Google Scholar 

  • Mia S, Munoz C, Pakladok T, Siraskar G, Voelkl J, Alesutan I, Lang F (2012) Downregulation of Kv1.5K channels by the AMP-activated protein kinase. Cell Physiol Biochem 30(4):1039–1050. doi:10.1159/000341480

    Article  CAS  PubMed  Google Scholar 

  • Munoz C, Almilaji A, Setiawan I, Foller M, Lang F (2013) Up-regulation of the inwardly rectifying K(+) channel Kir2.1 (KCNJ2) by protein kinase B (PKB/Akt) and PIKfyve. JMembr Biol 246(3):189–197. doi:10.1007/s00232-012-9520-9

    Article  CAS  Google Scholar 

  • Myssina S, Lang PA, Kempe DS, Kaiser S, Huber SM, Wieder T, Lang F (2004) Cl channel blockers NPPB and niflumic acid blunt Ca(2+)-induced erythrocyte ‘apoptosis’. Cell Physiol Biochem 14(4–6):241–248

    Article  CAS  PubMed  Google Scholar 

  • Nakayama J, Yamamoto M, Hayashi K, Satoh H, Bundo K, Kubo M, Goitsuka R, Farrar MA, Kitamura D (2009) BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3. Blood 113(7):1483–1492. doi:10.1182/blood-2008-07-166355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okada Y, Maeno E (2001) Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp Biochem Physiol 130(3):377–383

    Article  CAS  Google Scholar 

  • Okada Y, Maeno E, Shimizu T, Manabe K, Mori S, Nabekura T (2004) Dual roles of plasmalemmal chloride channels in induction of cell death. Pflugers Arch 448(3):287–295

    Article  CAS  PubMed  Google Scholar 

  • O’Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109(Suppl):S121–S131

    Article  PubMed  Google Scholar 

  • Pakladok T, Hosseinzadeh Z, Alesutan I, Lang F (2012) Stimulation of the Na(+)-coupled glucose transporter SGLT1 by B-RAF. Biochem Biophys Res Commun 427(4):689–693. doi:10.1016/j.bbrc.2012.09.062

    Article  CAS  PubMed  Google Scholar 

  • Pakladok T, Almilaji A, Munoz C, Alesutan I, Lang F (2013) PIKfyve sensitivity of hERG channels. Cell Physiol Biochem 31(6):785–794. doi:10.1159/000350096

    Article  CAS  PubMed  Google Scholar 

  • Pathare G, Foller M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voelkl J, Wagner CA, Bachmann S, Lang F (2012a) OSR1-sensitive renal tubular phosphate reabsorption. Kidney Blood Press Res 36(1):149–161. doi:10.1159/000343405

    Article  CAS  PubMed  Google Scholar 

  • Pathare G, Foller M, Michael D, Walker B, Hierlmeier M, Mannheim JG, Pichler BJ, Lang F (2012b) Enhanced FGF23 serum concentrations and phosphaturia in gene targeted mice expressing WNK-resistant SPAK. Kidney Blood Press Res 36(1):355–364. doi:10.1159/000343393

    Article  CAS  PubMed  Google Scholar 

  • Porcelli AM, Ghelli A, Zanna C, Valente P, Ferroni S, Rugolo M (2004) Apoptosis induced by staurosporine in ECV304 cells requires cell shrinkage and upregulation of Cl conductance. Cell Death Differ 11(6):655–662

    CAS  PubMed  Google Scholar 

  • Pusch M, Jordt SE, Stein V, Jentsch TJ (1999) Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol 515(Pt 2):341–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ritter M, Woll E, Waldegger S, Haussinger D, Lang HJ, Scholz W, Scholkens B, Lang F (1993) Cell shrinkage stimulates bradykinin-induced cell membrane potential oscillations in NIH 3T3 fibroblasts expressing the ras-oncogene. Pflugers Arch 423(3–4):221–224

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Numata T, Okada Y (2004) A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(−) channel. Proc Natl Acad Sci USA 101(17):6770–6773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shojaiefard M, Hosseinzadeh Z, Bhavsar SK, Lang F (2012) Downregulation of the creatine transporter SLC6A8 by JAK2. J Membr Biol 245(3):157–163. doi:10.1007/s00232-012-9424-8

    Article  CAS  PubMed  Google Scholar 

  • Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3(11):900–911. doi:10.1038/nri1226

    Article  CAS  PubMed  Google Scholar 

  • Souktani R, Berdeaux A, Ghaleh B, Giudicelli JF, Guize L, Le Heuzey JY, Henry P (2000) Induction of apoptosis using sphingolipids activates a chloride current in Xenopus laevis oocytes. Am J Physiol Cell Physiol 279(1):C158–C165

    CAS  PubMed  Google Scholar 

  • Staley K, Smith R, Schaack J, Wilcox C, Jentsch TJ (1996) Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17(3):543–551

    Article  CAS  PubMed  Google Scholar 

  • Stegen C, Matskevich I, Wagner CA, Paulmichl M, Lang F, Broer S (2000) Swelling-induced taurine release without chloride channel activity in Xenopus laevis oocytes expressing anion channels and transporters. Biochim Biophys Acta 1467(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Szabo I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F (1998) Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc Natl Acad Sci USA 95(11):6169–6174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thiemann A, Grunder S, Pusch M, Jentsch TJ (1992) A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356(6364):57–60

    Article  CAS  PubMed  Google Scholar 

  • Uckun FM, Vassilev A, Dibirdik I, Tibbles H (2007) Targeting JAK3 tyrosine kinase-linked signal transduction pathways with rationally-designed inhibitors. Anti Cancer Agents Med Chem 7(6):612–623

    Article  CAS  Google Scholar 

  • Walters DK, Mercher T, Gu TL, O’Hare T, Tyner JW, Loriaux M, Goss VL, Lee KA, Eide CA, Wong MJ, Stoffregen EP, McGreevey L, Nardone J, Moore SA, Crispino J, Boggon TJ, Heinrich MC, Deininger MW, Polakiewicz RD, Gilliland DG, Druker BJ (2006) Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10(1):65–75. doi:10.1016/j.ccr.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  • Warsi J, Hosseinzadeh Z, Dong L, Pakladok T, Umbach AT, Bhavsar SK, Shumilina E, Lang F (2013) Effect of Janus Kinase 3 on the Peptide Transporters PEPT1 and PEPT2. J Membr Biol 246(12):885–892. doi:10.1007/s00232-013-9582-3

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Xiao AY, Jin C, Yang A, Lu ZY, Yu SP (2004) Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Arch 448(3):325–334

    Article  CAS  PubMed  Google Scholar 

  • Zuo W, Zhu L, Bai Z, Zhang H, Mao J, Chen L, Wang L (2009) Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells. Biochem Biophys Res Commun 387(4):666–670

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the meticulous preparation of the manuscript by Tanja Loch and the technical support by Elfriede Faber. This study was supported by the Deutsche Forschungsgemeinschaft, SFB 773 B4/A1, La 315/13-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warsi, J., Elvira, B., Hosseinzadeh, Z. et al. Downregulation of Chloride Channel ClC-2 by Janus Kinase 3. J Membrane Biol 247, 387–393 (2014). https://doi.org/10.1007/s00232-014-9645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9645-0

Keywords

Navigation