Skip to main content
Log in

Actin Microfilament Involved in Regulation of Pacemaking Activity in Cultured Interstitial Cells of Cajal from Murine Intestine

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The present study investigated the effect of actin microfilament structure on pacemaker currents and calcium oscillation in cultured murine intestinal interstitial cells of Cajal (ICCs) by whole-cell patch-clamp technique and calcium imaging technique. Cytochalasin B, a disruptor of actin microfilaments, decreased the amplitude and frequency of pacemaker currents from 491.32 ± 160.33 pA and 11.73 ± 0.79 cycles/min to 233.12 ± 92.00 pA and 10.29 ± 0.76 cycles/min. Cytochalasin B also decreased the amplitude and frequency of calcium oscillation from 0.32 ± 0.08 (ΔF/F0) and 2.75 ± 0.17 cycles/min to 0.02 ± 0.01 (ΔF/F0) and 1.20 ± 0.08 cycles/min. Phalloidin, a stabilizer of actin microfilaments, increased the amplitude and frequency of pacemaker currents from 751.79 ± 282.82 pA and 13.93 ± 1.00 cycles/min to 1234.34 ± 607.83 pA and 14.68 ± 1.00 cycles/min. Phalloidin also increased the amplitude and frequency of calcium oscillation from 0.26 ± 0.01 (ΔF/F0) and 2.27 ± 0.18 cycles/min to 0.43 ± 0.03 (ΔF/F0) and 2.87 ± 0.07 cycles/min. 2-Aminoethoxydiphenyl borane (2-APB), an IP3 receptor blocker, suppressed both pacemaker currents and calcium oscillations. 2-APB also blocked the phalloidin-induced increase in pacemaker currents and calcium oscillation. Ryanodine, an inhibitor of calcium-induced calcium release, did not affect pacemaker current but suppressed calcium oscillations. Ryanodine had no effect on altering phalloidin-induced increases in pacemaker current and calcium oscillation. These results suggest that actin microfilaments regulate pacemaker activity via the IP3-induced calcium release signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Allingham JS, Klenchin VA, Rayment I (2006) Actin-targeting natural products: structures, properties and mechanisms of action. Cell Mol Life Sci 63:2119–2134

    Article  CAS  PubMed  Google Scholar 

  • Aoyama M, Yamada A, Wang J, Ohya S, Furuzono S, Goto T, Hotta S, Ito Y, Matsubara T, Shimokata K, Chen SR, Imaizumi Y, Nakayama S (2004) Requirement of ryanodine receptors for pacemaker Ca2+ activity in ICC and HEK293 cells. J Cell Sci 117:2813–2825

    Article  CAS  PubMed  Google Scholar 

  • Bose DD, Thomas DW (2009) The actin cytoskeleton differentially regulates NG115–401L cell ryanodine receptor and inositol 1,4,5-trisphosphate receptor induced calcium signaling pathways. Biochem Biophys Res Commun 379:594–599

    Article  CAS  PubMed  Google Scholar 

  • Brown SS, Spudich JA (1979) Cytochalasin inhibits the rate of elongation of actin filament fragments. J Cell Biol 83:657–662

    Article  CAS  PubMed  Google Scholar 

  • Cantiello HF, Prat AG, Bonventre JV, Cunningham CC, Hartwig JH, Ausiello DA (1993) Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells. J Biol Chem 268:4596–4599

    CAS  PubMed  Google Scholar 

  • Cioffi DL, Wu S, Stevens T (2003) On the endothelial cell I (SOC). Cell Calcium 33:323–336

    Article  CAS  PubMed  Google Scholar 

  • Clark K, Langeslag M, Van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, Van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25:290–301

    Article  CAS  PubMed  Google Scholar 

  • Clarka K, Middelbeekb J, Van Leeuwenb FN (2008) Interplay between TRP channels and the cytoskeleton in health and disease. Eur J Cell Biol 87:631–640

    Article  Google Scholar 

  • Der-Silaphet T, Malysz J, Hagel S, Larry Arsenault A, Huizinga JD (1998) Interstitial cells of Cajal direct normal propulsive contractile activity in the mouse small intestine. Gastroenterology 114:724–736

    Article  CAS  PubMed  Google Scholar 

  • Faussone-Pellegrini MS, Thuneberg L (1999) Guide to the identification of interstitial cells of Cajal. Microsc Res Tech 47:248–266

    Article  CAS  PubMed  Google Scholar 

  • Galione A, Churchill GC (2002) Interactions between calcium release pathways: multiple messengers and multiple stores. Cell Calcium 32:343–354

    Article  CAS  PubMed  Google Scholar 

  • Goel M, Sinkins W, Keightley A, Kinter M, Schilling WP (2005) Proteomic analysis of TRPC5- and TRPC6- binding partners reveals interaction with the plasmalemmal Na(+)/K(+)-ATPase. Pflugers Arch 451:87–98

    Article  CAS  PubMed  Google Scholar 

  • Gravante B, Barbuti A, Milanesi R, Zappi I, Viscomi C, Difrancesco D (2004) Interaction of the pacemaker channel HCN1 with filamin A. J Biol Chem 279:43847–43853

    Article  CAS  PubMed  Google Scholar 

  • Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349

    Article  CAS  PubMed  Google Scholar 

  • Huizinga JD, Zhu Y, Ye J, Molleman A (2002) High-conductance chloride channels generate pacemaker currents in interstitial cells of Cajal. Gastroenterology 123:1627–1636

    Article  CAS  PubMed  Google Scholar 

  • Jessen F, Hoffmann EK (1992) Activation of the Na+/K+/Cl cotransport system by reorganization of the actin filaments in Ehrlich ascites tumor cells. Biochim Biophys Acta 1110:199–201

    Article  CAS  PubMed  Google Scholar 

  • Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, So I, Stanfield PR, Kim KW (2005) Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 129:1504–1517

    Article  CAS  PubMed  Google Scholar 

  • Koh SD, Sanders KM, Ward SM (1998) Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J Physiol 513:203–213

    Article  CAS  PubMed  Google Scholar 

  • Koh SD, Jun JY, Kim TW, Sanders KM (2002) A Ca(2 +)-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J Physiol 540:803–814

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Dai XQ, Shen PY, Wu Y, Long W, Chen CX, Hussain Z, Wang S, Chen XZ (2007) Direct binding of alpha-actinin enhances TRPP3 channel activity. J Neurochem 103:2391–2400

    Article  CAS  PubMed  Google Scholar 

  • Liu HN, Ohya S, Wang J, Imaizumi Y, Nakayama S (2005) Involvement of ryanodine receptors in pacemaker Ca2+ oscillation in murine gastric ICC. Biochem Biophys Res Commun 328:640–646

    Article  CAS  PubMed  Google Scholar 

  • López JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281:28254–28264

    Article  PubMed  Google Scholar 

  • Malysz J, Donnelly G, Huizinga JD (2001) Regulation of slow wave frequency by IP(3)-sensitive calcium release in the murine small intestine. Am J Physiol Gastrointest Liver Physiol 280:G439–G448

    CAS  PubMed  Google Scholar 

  • Masgrau R, Churchill GC, Morgan AJ, Ashcroft SJ, Galione A (2003) NAADP: a new second messenger for glucose-induced Ca2+ responses in clonal pancreatic beta cells. Curr Biol 13:247–251

    Article  CAS  PubMed  Google Scholar 

  • Mazzochi C, Benos DJ, Smith PR (2006) Interaction of epithelial ion channels with the actin-based cytoskeleton. Am J Physiol Renal Physiol 291:F1113–F1122

    Article  CAS  PubMed  Google Scholar 

  • Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB (2003) RhoA interaction with inositol 1, 4, 5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2 + entry. Role in signaling increased endothelial permeability. J Biol Chem 278:33492–33500

    Article  CAS  PubMed  Google Scholar 

  • Papakonstanti EA, Stournaras C (2008) Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Lett 582:2120–2127

    Article  CAS  PubMed  Google Scholar 

  • Prat AG, Bertorello AM, Ausiello DA, Cantiello HF (1993) Activation of epithelial Na+ channels by protein kinase A requires actin filaments. Am J Physiol 265:C224–C233

    CAS  PubMed  Google Scholar 

  • Publicover NG, Hammond EM, Sanders KM (1993) Amplification of nitric oxide signaling by interstitial cells isolated from canine colon. Proc Natl Acad Sci USA 90:2087–2091

    Article  CAS  PubMed  Google Scholar 

  • Rosado JA, Sage SO (2000) The actin cytoskeleton in store-mediated calcium entry. J Physiol 526:221–229

    Article  CAS  PubMed  Google Scholar 

  • Sanders KM (1996) A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111:492–515

    Article  CAS  PubMed  Google Scholar 

  • Sanders KM, Ordog T, Koh SD, Torihashi S, Ward SM (1999) Development and plasticity of interstitial cells of Cajal. Neurogastroenterol Motil 11:311–338

    Article  CAS  PubMed  Google Scholar 

  • Sanders KM, Ordog T, Koh SD, Ward SM (2000) A novel pacemaker mechanism drives gastrointestinal rhythmicity. News Physiol Sci 15:291–298

    CAS  PubMed  Google Scholar 

  • Suzuki H, Takano H, Yamamoto Y, Komuro T, Saito M, Kato K, Mikoshiba K (2000) Properties of gastric smooth muscles obtained from mice which lack inositol trisphosphate receptor. J Physiol 525:105–111

    Article  CAS  PubMed  Google Scholar 

  • Szurszewski JH (1987) Electrical basis for gastrointestinal motility. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 383–422

    Google Scholar 

  • Vannucchi MG, Zizzo MG, Zardo C, Pieri L, Serio R, Mulè F, Faussone-Pellegrini MS (2004) Ultrastructural changes in the interstitial cells of Cajal and gastric dysrhythmias in mice lacking full-length dystrophin (mdx mice). J Cell Physiol 199:293–309

    Article  CAS  PubMed  Google Scholar 

  • Walker RL, Koh SD, Sergeant GP, Sanders KM, Horowitz B (2002) TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am J Physiol Cell Physiol 283:C1637–C1645

    CAS  PubMed  Google Scholar 

  • Ward SM, Sanders KM (2001) Physiology and pathophysiology of the interstitial cells of Cajal; from the bench to bedside I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol 281:G602–G611

    CAS  PubMed  Google Scholar 

  • Ward SM, Ordog T, Koh SD, Baker SA, Jun JY, Amberg G, Monaghan K, Sanders KM (2000) Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Physiol 525:355–361

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Piao LH, Huang X, Han YF, Zhao P, Gao L, Kim Y, Xu WX (2006) Pacemaker currents modulated by C-type natriuretic peptide in interstitial cells of Cajal from murine small intestine. J Physiol Biochem 62:281–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was funded by grant 10672103 provided by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Xie Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z.Y., Han, Y.F., Huang, X. et al. Actin Microfilament Involved in Regulation of Pacemaking Activity in Cultured Interstitial Cells of Cajal from Murine Intestine. J Membrane Biol 234, 217–225 (2010). https://doi.org/10.1007/s00232-010-9248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9248-3

Keywords

Navigation