Skip to main content
Log in

Optical Coherence Tomography Phase Measurement of Transient Changes in Squid Giant Axons During Activity

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Noncontact optical measurements reveal that transient changes in squid giant axons are associated with action potential propagation and altered under different environmental (i.e., temperature) and physiological (i.e., ionic concentrations) conditions. Using a spectral-domain optical coherence tomography system, which produces real-time cross-sectional images of the axon in a nerve chamber, axonal surfaces along a depth profile are monitored. Differential phase analyses show transient changes around the membrane on a millisecond timescale, and the response is coincident with the arrival of the action potential at the optical measurement area. Cooling the axon slows the electrical and optical responses and increases the magnitude of the transient signals. Increasing the NaCl concentration bathing the axon, whose diameter is decreased in the hypertonic solution, results in significantly larger transient signals during action potential propagation. While monophasic and biphasic behaviors are observed, biphasic behavior dominates the results. The initial phase detected was constant for a single location but alternated for different locations; therefore, these transient signals acquired around the membrane appear to have local characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akkin T, Davé DP, Milner TE, Rylander HG III (2004) Detection of neural activity using phase-sensitive optical low-coherence reflectometry. Opt Express 12:2377–2386

    Article  PubMed  Google Scholar 

  • Akkin T, Joo C, de Boer JF (2007) Depth-resolved measurement of transient structural changes during action potential propagation. Biophys J 93:1347–1353

    Article  PubMed  CAS  Google Scholar 

  • Almers W, Stanfield PR, Stühmer W (1983) Lateral distribution of sodium and potassium channels in frog skeletal muscle: measurements with a patch-clamp technique. J Physiol 336:261–284

    PubMed  CAS  Google Scholar 

  • Bear RS, Schmitt FO, Young JZ (1937) The sheath components of the giant nerve fibres of the squid. Proc R Soc Lond B 123:496–504

    Article  CAS  Google Scholar 

  • Bryant SH, Tobias JM (1955) Optical and mechanical concomitants of activity in carcinus nerve I. Effect of sodium azide on the optical response II. Shortening of the nerve with activity. J Cell Comp Physiol 46:71–95

    Article  CAS  Google Scholar 

  • Cense B, Nassif NA, Chen T, Pierce M, Yun S, Park B, Bouma B, Guillermo T, de Boer JF (2004) Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt Express 12:2435–2447

    Article  PubMed  Google Scholar 

  • Choma MA, Ellerbee AK, Yang C, Creazzo TL, Izatt JA (2005) Spectral-domain phase microscopy. Opt Lett 30:1162–1164

    Article  PubMed  Google Scholar 

  • Cohen LB (1973) Changes in neuron structure during action potential propagation and synaptic transmission. Physiol Rev 53:373–418

    PubMed  CAS  Google Scholar 

  • Cohen LB, Keynes RD, Hille B (1968) Light scattering and birefringence changes during nerve activity. Nature 218:438–441

    Article  PubMed  CAS  Google Scholar 

  • Cohen LB, Hille B, Keynes RD (1969) Light scattering and birefringence changes during activity in the electric organ of electrophorus. J Physiol 203:489–509

    PubMed  CAS  Google Scholar 

  • Cohen LB, Hille B, Keynes RD (1970) Changes in axon birefringence during the action potential. J Physiol 211:495–515

    PubMed  CAS  Google Scholar 

  • Cohen LB, Landowne D (1974) The temperature dependence of the movement of sodium ions associated with nerve impulses. J Physiol 236:95–111

    PubMed  CAS  Google Scholar 

  • Fang-Yen C, Chu MC, Seung HS, Dasari RR, Feld MS (2004) Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer. Opt Lett 29:2028–2030

    Article  PubMed  Google Scholar 

  • Fercher AF, Hitzenberger CK, Kamp G, Elzaiat SY (1995) Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 117:43–48

    Article  CAS  Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1956) The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol 131:341–376

    PubMed  CAS  Google Scholar 

  • Gogan P, Schmiedel-Jakob I, Chitti Y, Tyc-Dumont S (1995) Fluorescence imaging of local membrane electric fields during the excitation of single neurons in culture. Biophys J 69:299–310

    Article  PubMed  CAS  Google Scholar 

  • Hausler G, Lindner MW (1998) Coherence radar and spectral radar—new tools for dermatological diagnosis. J Biomed Opt 3:21–31

    Article  Google Scholar 

  • Hill BC, Schubert ED, Nokes MA, Michelson RP (1977) Laser interferometer measurement of changes in crayfish axon diameter concurrent with action potential. Science 196:426–428

    Article  PubMed  CAS  Google Scholar 

  • Hill DK (1950) The volume change resulting from stimulation of a giant nerve fibre. J Physiol 111:304–327

    PubMed  CAS  Google Scholar 

  • Hill DK, Keynes RD (1949) Opacity changes in stimulated nerve. J Physiol 108:278–281

    Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol 109:240–249

    PubMed  CAS  Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  • Iwasa K, Tasaki I (1980) Mechanical changes in squid giant axons associated with production of action potentials. Biochem Biophys Res Commun 95:1328–1331

    Article  PubMed  CAS  Google Scholar 

  • Joo C, Akkin T, Cense B, Park BH, de Boer JF (2005) Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Opt Lett 30:2131–2133

    Article  PubMed  Google Scholar 

  • Kim GH, Kosterin P, Obaid AL, Salzberg BM (2007) A mechanical spike accompanies the action potential in mammalian nerve terminals. Biophys J 92:3122–3129

    Article  PubMed  CAS  Google Scholar 

  • Landowne D, Scruggs V (1976) The temperature dependence of the movement of potassium and chloride ions associated with nerve impulses. J Physiol 259:145–158

    PubMed  CAS  Google Scholar 

  • Mosbacher J, Langer M, Hörber JKH, Sachs F (1998) Voltage-dependent membrane displacements measured by atomic force microscopy. J Gen Physiol 111:65–74

    Article  PubMed  CAS  Google Scholar 

  • Nassif N, Cense B, Park BH, Yun SH, Chen TC, Bouma BE, Tearney GJ, de Boer JF (2004) In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt Lett 29:480–482

    Article  PubMed  Google Scholar 

  • Park BH, Pierce MC, Cense B, Yun SH, Mujat M, Tearney GJ, Bouma BE, de Boer JF (2005) Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm. Opt Express 13:3931–3944

    Article  PubMed  CAS  Google Scholar 

  • Petrov AG, Ramsey RL, Usherwood PNR (1989) Curvature-electric effects in artificial and natural membranes studied using patch-clamp techniques. Eur Biophys J 17:13–17

    Article  PubMed  CAS  Google Scholar 

  • Raphael RM, Popel AS, Brownell WE (2000) A membrane bending model of outer hair cell electromotility. Biophys J 78:2844–2862

    Article  PubMed  CAS  Google Scholar 

  • Sivaprakasam A, Landowne D, Akkin T (2008) Non-contact optical measurement of nanometer range deformations in squid giant axon structure during activity. Biophys J 94:817

    Google Scholar 

  • Tasaki I, Watanabe A, Sandlin R, Carnay L (1968) Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci USA 61:883–888

    Article  PubMed  CAS  Google Scholar 

  • Tasaki I, Iwasa K (1982) Rapid pressure changes and surface displacements in the squid giant axon associated with production of action potentials. Jpn J Physiol 32:69–81

    PubMed  CAS  Google Scholar 

  • Tasaki I, Kusano K, Byrne PM (1989) Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse. Biophys J 55:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Tasaki I, Byrne PM (1990) Volume expansion of nonmyelinated nerve fibers during impulse conduction. Biophys J 57:633–635

    Article  PubMed  CAS  Google Scholar 

  • Todorov AT, Petrov AG, Fendler JH (1994) First observation of the converse flexoelectric effect in bilayer lipid membranes. J Phys Chem 98:3076–3079

    Article  CAS  Google Scholar 

  • Tripathi R, Nassif N, Nelson JS, Park BH, de Boer JF (2002) Spectral shaping for non-gaussian source spectra in optical coherence tomography. Opt Lett 27:406–408

    Article  PubMed  Google Scholar 

  • Villegas GM, Villegas R (1960) The ultrastructure of the giant nerve fibre of the squid: axon–schwann cell relationship. J Ultrastruct Res 3:362–373

    Article  PubMed  CAS  Google Scholar 

  • von Muralt A (1975) The optical spike. Philos Trans R Soc Lond B Biol Sci 270:411–423

    Article  Google Scholar 

  • White BR, Pierce MC, Nassif N, Cense B, Park BH, Tearney GJ, Bouma BE, Chen TC, de Boer JF (2003) In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt Express 11:3490–3497

    Article  PubMed  Google Scholar 

  • Wojtkowski M, Leitgeb R, Kowalczyk A, Fercher AF (2002) Fourier domain OCT imaging of the human eye in vivo. Proc Soc Photo Opt Instrum Eng 4619:230–236

    Google Scholar 

  • Yao X, Rector DM, George JS (2003) Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes. Appl Opt 42:2972–2978

    Article  Google Scholar 

  • Yazdanfar S, Yang C, Sarunic MV, Izatt JA (2005) Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound. Opt Express 13:410–416

    Article  PubMed  Google Scholar 

  • Zimmerberg J, Bezanilla F, Parsegian VA (1990) Solute inaccessible aqueous volume changes during opening of the potassium channel of the squid giant axon. Biophys J 57:1049–1064

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the National Institutes of Health (EB006588, cofunded by NIBIB and NEI) and by the H. Keffer Hartline and Edward F. MacNichol, Jr. Fellowship Fund at the Marine Biological Laboratory (Woods Hole, MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taner Akkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akkin, T., Landowne, D. & Sivaprakasam, A. Optical Coherence Tomography Phase Measurement of Transient Changes in Squid Giant Axons During Activity. J Membrane Biol 231, 35–46 (2009). https://doi.org/10.1007/s00232-009-9202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9202-4

Keywords

Navigation