Skip to main content

Advertisement

Log in

Thin layer drying of wormwood (Artemisia absinthium L.) leaves: dehydration characteristics, rehydration capacity and energy consumption

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This study aimed at determining the influence of temperature on drying, rehydration and consumed energy characteristics of common wormwood leaves during thin layer drying. The experiments were carried out at temperatures of 50, 60 and 70 °C and a constant air velocity of 0.7 m s−1. The dehydration duration decreased significantly with increasing drying air temperature. The usefulness of five different mathematical models to simulate the experimental drying kinetics was evaluated and the Midilli model was found to be the best model for explaining the curves. Effective moisture diffusivity values were obtained to be in the range of 7.099 × 10−8–3.191 × 10−7 m2 s−1. Rehydration capacity of the dried leaves increased with increasing rehydration water temperature and decreasing drying air temperature. The specific energy consumption decreased with any increment in drying air temperature and varied from 17.64 to 32.09 kWh kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hartley D (1985) Food in England, Futura Publications

  2. Šumic Z, Vakula A, Tepic A, Cakarevic J, Vitas J, Pavlic B (2016) Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chem 203:465–475

    Article  Google Scholar 

  3. Aral S, Bese AV (2016) Convective drying of hawthorn fruit (Crataegus spp.): effect of experimental parameters in drying kinetics, color, shrinkage, and rehydration capacity. Food Chem 210:577–584

    Article  Google Scholar 

  4. Onwude DI, Hashin N, Janius RB, Nawi NM, Abdan K (2016) Modeling the thin-layer drying of fruits and vegetables: a review. Compr Rev Food Sci Food Saf 15(3):559–618

    Article  Google Scholar 

  5. Babalis SJ, Belessiotis VG (2004) Influence of drying conditions on the drying constants and moisture diffusivity during the thin- layer drying of figs. J Food Eng 65(3):449–458

    Article  Google Scholar 

  6. Doymaz I (2006) Drying kinetics of black grapes treated with different solutions. J Food Eng 76(2):212–217

    Article  Google Scholar 

  7. Cihan A, Kahveci K, Hacihafizoglu O (2007) Modelling of intermittent drying of thin layer rough rice. J Food Eng 79(1):293–298

    Article  Google Scholar 

  8. Aktas M, Ceylan I, Yilmaz S (2009) Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination 239(1–3):266–275

    Article  Google Scholar 

  9. Doymaz I, Ismail O (2011) Drying characteristics of sweet cherry. Food Bioprod Process 89(1):31–38

    Article  Google Scholar 

  10. Dak M, Pareek NK (2014) Effective moisture diffusivity of pomegranate arils undergoing microwave-vacuum drying. J Food Eng 122:117–121

    Article  Google Scholar 

  11. Sirdhar D, Madhu GM (2015) Drying kinetics and mathematical modelling of Casuarina equisetifolia wood chips at various temperatures. Period Polytech Chem Eng 59(4):288–295

    Article  Google Scholar 

  12. Torki-Harchegani M, Ghasemi-Varnamkhasti M, Ghanbarian D, Sadeghi M, Tohidi M (2016) Dehydration characteristics and mathematical modelling of lemon slices drying undergoing oven treatment. Heat Mass Transf 52(2):281–289

    Article  Google Scholar 

  13. Planinic´ M, Velic´ D, Tomas S, Bilic M, Bucic´ A (2005) Modelling of drying and rehydration of carrots using Peleg’s model. Eur Food Res Technol 221(3):446–451

    Article  Google Scholar 

  14. Ergün K, Çaliskan G, Dirim SN (2016) Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat Mass Transf 52(12):2697–2705

    Google Scholar 

  15. Fathima A, Begum K, Rajalakshmi D (2001) Microwave drying of selected greens and their sensory characteristics. Plant Food Hum Nutr 56(4):303–311

    Article  Google Scholar 

  16. Mujaffar S, Loy AL (2016) The rehydration behavior of microwave-dried amaranth (Amaranthus dubius) leaves. Food Sci Nutr. doi:10.1002/fsn3.406

    Google Scholar 

  17. Aghbashlo M, Kianmehr MH, Samimi-Akhijahani H (2008) Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Convers Manage 49(10):2865–2871

    Article  Google Scholar 

  18. Martynenko A, Zheng W (2016) Electrohydrodynamic drying of apple slices: energy and quality aspects. J Food Eng 168:215–222

    Article  Google Scholar 

  19. Motevali A, Minaei S, Khoshtaghaza MH (2011) Evaluation of energy consumption in different drying methods. Energy Convers Manage 52(2):1192–1199

    Article  Google Scholar 

  20. Torki-Harchegani M, Ghanbarian D, Ghasemi Pirbalouti A, Sadeghi M (2016) Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renew Sust Energy Rev 58:407–418

    Article  Google Scholar 

  21. Beigi M (2016) Influence of drying air parameters on mass transfer characteristics of apple slices. Heat Mass Transf 52(10):2213–2221

    Article  Google Scholar 

  22. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, London

    MATH  Google Scholar 

  23. Beigi M (2016) Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat Mass Transf 52(8):1435–1442

    Article  Google Scholar 

  24. Balasubramanian S, Sharma R, Gupta RK, Patil RT (2011) Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves. J Food Sci Technol 48(6):685–691

    Article  Google Scholar 

  25. Kaleemullah S, Kailappan R (2006) Modelling of thin-layer drying kinetics of red chillies. J Food Eng 76(4):531–537

    Article  Google Scholar 

  26. Orikasa T, Koide S, Okamoto S, Imaizumi T, Muramatsu Y, Takeda J, Shiina T, Tagawa A (2014) Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices. J Food Eng 125:51–58

    Article  Google Scholar 

  27. Doymaz I, Ismail O (2010) Drying and rehydration behaviours of green bell peppers. Food Sci Biotechnol 19(6):1449–1455

    Article  Google Scholar 

  28. Sacilik K, Elicin AK (2006) The thin layer drying characteristics of organic apple slices. J Food Eng 73(3):281–289

    Article  Google Scholar 

  29. Ghanbarian D, Baraani Dastjerdi M, Torki-Harchegani M (2016) Mass transfer characteristics of bisporus mushroom (Agaricus bisporus) slices during convective hot air drying. Heat Mass Transf 52:1081–1088

    Article  Google Scholar 

  30. Tulek Y (2011) Drying kinetics of oyster mushroom (Pleurotus ostreatus) in a convective hot air dryer. J Agric Sci Technol 13(5):655–664

    Google Scholar 

  31. Evin D (2011) Microwave drying and moisture diffusivity of white mulberry: experimental and mathematical modelling. J Mech Sci Technol 25:2711–2718

    Article  Google Scholar 

  32. Minaei S, Motevali A, Ahmadi E, Azizi MH (2012) Mathematical models of drying pomegranate arils in vacuum and microwave dryers. J Agric Sci Technol 14(2):311–325

    Google Scholar 

  33. Erbay Z, Icier F (2010) Thin-layer drying behaviors of olive leaves (Olea europaea L.). J Food Process Eng 33:287–308

    Article  Google Scholar 

  34. Lemus-Mondaca R, Vega-Gálvez A, Moraga NO, Astudillo S (2015) Dehydration of stevia rebaudiana bertoni leaves: kinetics, modeling and energy features. J Food Proces Preserv 39(5):508–520

    Article  Google Scholar 

  35. Seremet L, Botez E, Nistor OV, Andronoiu DG, Mocanu GD (2016) Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chem 195:104–109

    Article  Google Scholar 

  36. Alibas I (2007) Energy consumption and colour characteristics of nettle leaves during microwave, vacuum and convective drying. Biosyst Eng 96(4):495–502

    Article  Google Scholar 

  37. Beigi M (2016) Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Sci Technol 36(1):145–150

    MathSciNet  Google Scholar 

  38. Motevali A, Minaei S, Banakar A, Ghobadian B, Khoshtaghaza MH (2014) Comparison of energy parameters in various dryers. Energy Convers Manage 87:711–725

    Article  Google Scholar 

  39. Tohidi M, Sadeghi M, Torki-Harchegani M (2017) Energy and quality aspects for fixed deep bed drying of paddy. Renew Sust Energy Rev 70:519–528

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Beigi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beigi, M. Thin layer drying of wormwood (Artemisia absinthium L.) leaves: dehydration characteristics, rehydration capacity and energy consumption. Heat Mass Transfer 53, 2711–2718 (2017). https://doi.org/10.1007/s00231-017-2018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2018-3

Keywords

Navigation