Skip to main content
Log in

Study on solid liquid interface heat transfer of PCM under simultaneous charging and discharging (SCD) in horizontal cylinder annulus

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Heat transfer performance during the simultaneous charging and discharging (SCD) operation process for phase change materials (PCM) contained inside the annulus of concentric horizontal cylinder was investigated. In the experimental set-up, the PCM inside the annulus serves as the heat sink along with an externally imposed forced cooling air. The obtained time wise temperature profile was used to determine the effects of different heat fluxes and the imposed forced convection cooling on the melt fraction values and the transition shift time from the observed conduction to natural convection heat transfer patterns. Furthermore, non-dimensional analysis was presented for the heat transfer at the interface to enable generalizing the result. Comparison of the results show that the SCD operation mode establish the condition that enables much PCM phase transition time and thus longer time of large latent heat transfer effect than the Partial and non simultaneous operations. Analysis results show that the variation of the heat flux for the SCD mode did not change the dominance of the natural convection over conduction heat transfers in the PCM. However, it significantly influences the commencement/transition shift time and melting rate while higher heat fluxes yields melt fraction that was 38–63% more for investigated process time. Variation with different cooling air flow rate shows more influences on the melt fraction than on the mode of heat transfer occurring in the PCM during melting. Available non-SCD modes correlation was shown to be insufficient to accurately predict interface heat transfer for the SCD modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

c :

Specific heat (J/kg)

CHTF :

Cold heat transfer fluid

d :

Distance (m)

Fo :

Fourier number

g :

Gravitational acceleration

h :

Convective heat transfer coefficient (W/m2k)

HHTF :

Hot heat transfer fluid

k :

Thermal conductivity (W/mk)

Nu :

Nusselt number

Pr :

Prandtl number

q w :

Heat flux (W/m2)

Ra sl :

Rayleigh number at the interface

r c :

Characteristic radius due to melting front

r :

Inner cylinder radius (m)

R :

Outer cylinder radius (m)

Ste :

Stephan number

T :

Temperature (°C)

t :

Time, s

mf :

Melt fraction

u :

Velocity (m/s)

V :

Volume (m3)

∆H sl :

Latent heat of fusion (J/kg)

0°, 90°, 180°, 270° :

Radial angles

μ :

Dynamic viscosity of the fluid

ρ :

Density (kg/m3)

τ :

Dimensionless time

ʋ :

Kinematics viscosity

ß :

Thermal expansion coefficient

α :

Thermal diffusivity

a :

Air

ai :

Air in

a :

Air out

i :

Inner

l :

Liquid

m :

Melting point/melt

o :

Outer

p :

pcm

s :

Solid

sl :

Solid–liquid interface/melting front/interface position/melt thickness

srf :

Surface

T :

Total

w :

Wall

References

  1. Asmatlu R, Zalich MA, Claus OR, Riffle JS (2004) Characterization and targeting of biodegrable magnetic nanocomposite particles by external magnetic fields. J Magn Magn Mater 292:108–119

    Article  Google Scholar 

  2. Zhanga Y, Dinga J, Wanga X, Yang R, Lin K (2006) Influence of additives on thermal conductivity of shape-stabilized phase change material. Sol Energy Mater Solar Cells 90:1692–1702

    Article  Google Scholar 

  3. Hamada YA, Ohtsu W, Fukai J (2003) Thermal response in thermal energy storage material around heat transfer tubes: effects of additives on heat transfer rates. Sol Energy 75(4):317–328

    Article  Google Scholar 

  4. Al-Abidi AA, Sohif M, Sopian K, Sulaiman MY, Mohammad AT (2013) Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf 61:684–695

    Article  Google Scholar 

  5. Cárdenas B, León N (2013) High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques. Renew Sustain Energy Rev 27:724–737

    Article  Google Scholar 

  6. Mosaffa AH, Talati F, Tabrizi HB, Rosen MA (2012) Analytical modelling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems analytical modelling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems. Energy Build 49:356–361

    Article  Google Scholar 

  7. Chiu JNW, Martin V (2012) Submerged finned heat exchanger latent heat storage design and its experimental verification. Appl Energy 93:507–5161

    Article  Google Scholar 

  8. Jesumathy SP, Udayakumar M, Suresh S, Jegadheeswaran S (2014) An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit. J Taiwan Inst Chem Eng 45(4):298–1306

    Article  Google Scholar 

  9. Shamsundar N, Sparrow EM (1976) Analysis of multi- dimensional conduction phase change via the enthalpy model. J Heat Transf 97:333–340

    Article  Google Scholar 

  10. Cheung FB, Epstein M (1984) Solidification and melting in fluid flow. In: Majumdar AS (ed) Advance in transport processes, vol 3. Wiley, New Delhi, pp 35–117

    Google Scholar 

  11. Khillarkar DB, Gong ZX, Mujumdar AS (2000) Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section. Appl Therm Eng 20:893–912

    Article  Google Scholar 

  12. Sebti SS, Mastiani M, Kashani S, Mirzaei H, Sohrabi A (2013) Numerical study of melting in an annular enclosure filled with nano-enhanced phase change material. Therm Sci 4:94. doi:10.2298/TSCI120720022S

    Google Scholar 

  13. Mirzaei H, Dadvand A, Mastiani M, Sebti SS, Kashani S (2013) Melting of a phase change material in a horizontal annulus with discrete heat sources. Therm Sci 01:22. doi:10.2298/TSCI121024094M

    Google Scholar 

  14. Darzi AAR, Farhadi M, Sedighi K (2012) Numerical study of melting inside concentric and eccentric horizontal annulus. Appl Math Model 36:4080–4086

    Article  MATH  Google Scholar 

  15. Liu Z, Ma C (2002) Numerical analysis of melting with constant heat flux heating in a thermal energy storage system. Energy Convers Manag 43:2521–2538

    Article  Google Scholar 

  16. Dutta R, Atta A, Dutta TK (2008) Experimental and numerical study of heat transfer in horizontal concentric annulus containing phase change material. Can J Chem Eng 86(4):700–710. doi:10.1002/cjce.20075

    Article  Google Scholar 

  17. Benard C, Gobin D, Zanoli A (1986) Moving boundary problem- heat conduction in the solid phase of a phase-change material during melting driven by natural convection in the liquid. Int J Heat Mass Transf 29(11):1669–1681

    Article  Google Scholar 

  18. Bathelt AG, Viskanta R, Leidenfrost W (1979) An experimental investigation of natural convection in the melted region around a heated horizontal cylinder. J Fluid Mech 90(2):227–239 (Printed in Great Britain)

    Article  Google Scholar 

  19. Betzel T, Beer H (1988) Solidification and melting heat transfer to an unfixed phase change material (PCM) encapsulated in a horizontal concentric annulus. Warme-und Stoffiibertragung 22:335–344

    Article  Google Scholar 

  20. Okada M (1984) Analysis of heat transfer during melting from a vertical wall. J Heat Mass Transf 27(11):2057–2066

    Article  MATH  Google Scholar 

  21. Betzel T, Beer H (1986) Experimental investigation of heat transfer during melting around a horizontal tube with and without axial fins. Int Commun Heat Mass Transf 13:639–649

    Article  Google Scholar 

  22. Zhang K, Yang M, Wang J, Zhang Y (2014) Experimental study on natural convection in a cylindrical envelope with an internal concentric cylinder with slots. Int J Therm Sci 76:190–199

    Article  Google Scholar 

  23. Kuehn TH, Goldstein RJ (1978) An experimental study of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli. J Heat Transf 100:635–640

    Article  Google Scholar 

  24. Parson JR, Mulligan JC (1978) Transient heat free convection from a suddenly heated horizontal wire. J Heat Transf 100:423–428

    Article  Google Scholar 

  25. Lorsch HG, Kauffman KW, Denton JC (1975) Thermal energy storage for solar heating and off-peak air conditioning. Energy Convers 15(1–2):1–8

    Article  Google Scholar 

  26. Hongbo T, Cu L, Yanzhong L (2011) Simulation research on PCM freezing process to recover and store the cold energy of cryogenic gas. Int J Therm Sci 50:2220–2227

    Article  Google Scholar 

  27. Agyenim F, Eames P, Smyth MA (2009) comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol Energy 83(9):1509–1520

    Article  Google Scholar 

  28. Sasaguchi K, Viskanta R (1987) An experimental study of simultaneous melting and solidification around two horizontal vertically spaced cylinders. Exp Heat Transf J Therm Energy Gener Transp Storage Convers 1(3):223–236

    Google Scholar 

  29. Horbaniuc B, Dumitrascu G, Popesc A (1999) Mathematical models for the study of solidification within a longitudinally finned heat pipe latent heat thermal storage system. Energy Convers Manag 40:1765–1774

    Article  Google Scholar 

  30. Liu Z, Wang Z, Ma C (2006) An experimental study on the heat transfer characteristics of a heat pipe heat exchanger with latent heat storage, part II: simultaneous charging/discharging modes. Energy Convers Manag 47:967–991

    Article  Google Scholar 

  31. Omojaro AP, Brietkopf C (2014) Investigation and modelling of simultaneous charging and discharging of a PCM heat exchanger. Energy Procedia 48:413–422

    Article  Google Scholar 

  32. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75(1):3–8

    Google Scholar 

  33. Bathelt AG, Viskanta R (1980) Heat transfer at the solid-liquid interface during melting from a horizontal cylinder. Int J Heat Mass Transf 23:1493–1503

    Article  Google Scholar 

  34. Baron Roberts PE (2001–2015) Meazure 2.0 C-Thing Software. http://cthing.com/Meazure.asp. Accessed July 2015

  35. El-Omari K, Kousksou T, Le-Guer Y (2011) Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices. Appl Therm Eng 31(14–15):3022–3035

    Article  Google Scholar 

  36. Rieger H, Proiahn U, Beer H (1982) Analysis of the heat transport mechanisms during melting around a horizontal circular cylinder. Int J Heat Mass Transf 25(1):137–147

    Article  MATH  Google Scholar 

  37. Goldstein RJ, Ramsey JW (1979) Heat transfer to a melting solid with application to thermal energy storage systems. In: Eckert ERG (ed) Heat Transfer Studies: Festsehriftfor. Hemisphere, New York, pp 199–206

    Google Scholar 

  38. Bathelt AG, Viskanta R, Leidenfrost W (1979) An experimental investigation of natural convection in the melted region around a heated horizontal cylinder. Fluid Mech 90:227–239

    Article  Google Scholar 

  39. Grigull U, Hauf W (1966) Natural convection in horizontal cylindrical annuli. Proceedings of the third international heat transfer conference, vol 2. A. I. Ch. E, New York, pp 182–195

    Google Scholar 

Download references

Acknowledgements

This research work is supported by the Sächsisches state innovations scholarship No: L-201318.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adebola Peter Omojaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omojaro, A.P., Breitkopf, C. Study on solid liquid interface heat transfer of PCM under simultaneous charging and discharging (SCD) in horizontal cylinder annulus. Heat Mass Transfer 53, 2223–2240 (2017). https://doi.org/10.1007/s00231-017-1971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-1971-1

Keywords

Navigation