Skip to main content
Log in

Thermophysical and hydric properties estimation based on a double inverse analysis

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This article presents a dual method for the determination of thermophysical and hydric properties of porous materials. First empirical relationships between thermophysical properties and moisture content were determined. Then, a laboratory setup allowed for temperature recording during a drying test. Empirical relationships and recorded data are the algorithm inputs. The two stages algorithm is based on a finite difference discretization and a parametric estimation. Autoclaved Aerated Concrete was tested in this case study and positive estimation results with 8 % accuracy are encouraging outcome for next use of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

C :

Volumetric heat capacity (J K−1 m−3)

D :

Moisture diffusivity (m2 s−1)

F :

Objective function

m :

Mass (kg)

m dry :

Dry mass (kg)

p :

Parameters array

T :

Temperature (°C)

t :

Time (s)

x :

Space (thickness, m)

α :

Thermal diffusivity (m2 s−1)

λ :

Thermal conductivity (W K−1 m−1)

ρ :

Density (kg m−3)

ρ dry :

Dry density (kg m−3)

ω :

Moisture content (MC) (%)

ω sat :

Saturated moisture content (%)

i :

Time index

j :

Space index

References

  1. Schwarz V (2009) Promoting energy efficiency in buildings: Lessons learned from internatIonal experience (trans: Energy Ea). United Nations Development Programme, New York

    Google Scholar 

  2. Sartori I, Hestnes AG (2007) Energy use in the life cycle of conventional and low-energy buildings: a review article. Energy Build 39(3):249–257. doi:10.1016/j.enbuild.2006.07.001

    Article  Google Scholar 

  3. John G, Clements-Croome D, Jeronimidis G (2005) Sustainable building solutions: a review of lessons from the natural world. Build Environ 40(3):319–328. doi:10.1016/j.buildenv.2004.05.011

    Article  Google Scholar 

  4. Sadineni SB, Madala S, Boehm RF (2011) Passive building energy savings: a review of building envelope components. Renew Sustain Energy Rev 15(8):3617–3631. doi:10.1016/j.rser.2011.07.014

    Article  Google Scholar 

  5. Meukam P, Noumowe A (2005) Modeling of heat and mass transfer in lateritic building envelopes. Heat Mass Transf 42(2):158–167. doi:10.1007/s00231-005-0006-5

    Article  Google Scholar 

  6. Dincer I, Ozalp A, Zamfirescu C (2016) Drying phenomena: theory and applications. Wiley, New York

    Google Scholar 

  7. Luikov AV (1966) Heat and mass transfer in capillary-porous bodies. Pergamon Press, Oxford

    Book  MATH  Google Scholar 

  8. Philip JR, De Vries DA (1957) Moisture movement in porous materials under temperature gradients. Eos Trans Am Geophys Union 38(2):222–232. doi:10.1029/TR038i002p00222

    Article  Google Scholar 

  9. Baehr HD, Stephan K (2011) Heat and mass transfer. Springer, Berlin

    Book  MATH  Google Scholar 

  10. Siwińska A, Garbalińska H (2011) Thermal conductivity coefficient of cement-based mortars as air relative humidity function. Heat Mass Transf 47(9):1077–1087. doi:10.1007/s00231-011-0772-1

    Article  Google Scholar 

  11. Rahim M, Douzane O, Le Tran AD, Langlet T (2016) Effect of moisture and temperature on thermal properties of three bio-based materials. Constr Build Mater 111:119–127. doi:10.1016/j.conbuildmat.2016.02.061

    Article  Google Scholar 

  12. Dotto GL, Pinto LAA, Moreira MFP (2015) Determination of the effective thermal diffusivity in a porous bed containing rice grains: effects of moisture content and temperature. Heat Mass Transf 52(4):887–896. doi:10.1007/s00231-015-1604-5

    Article  Google Scholar 

  13. Narayanan N, Ramamurthy K (2000) Structure and properties of aerated concrete: a review. Cem Concr Compos 22(5):321–329. doi:10.1016/S0958-9465(00)00016-0

    Article  Google Scholar 

  14. Tada S, Nakano S (1983) Microstructural approach to properties of moist cellular concrete. In: Proceedings autoclaved aerated concrete, moisture and properties. Elsevier, Amsterdam, pp 71–89

  15. Korecký T, Ďurana K, Lapková M, Černý R (2012) Moisture diffusivity of AAC with different densities. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering 67:502–506

    Google Scholar 

  16. Delgado JMPQ, Freitas VP, Guimarães AS (2016) Water movement in building walls: interfaces influence on the moisture flux. Heat and Mass Transfer. doi:10.1007/s00231-016-1755-z

    Google Scholar 

  17. Fasina O, Sokhansanj S (1996) Estimation of moisture diffusivity coefficient and thermal properties of Alfalfa Pellets. J Agric Eng Res 63(4):333–343. doi:10.1006/jaer.1996.0036

    Article  Google Scholar 

  18. Lu S, Ren T, Gong Y, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J. doi:10.2136/sssaj2006.0041

    Google Scholar 

  19. Derbal R, Defer D, Chauchois A, Brachelet F (2015) Estimation of the moisture content based on a thermal analysis method case of the sand. In: Paper presented at the third international conference on advances in applied science and environmental technology—ASET 2015, Bangkok, Thailand, 28–29 December, 2015

  20. Derbal R, Defer D, Chauchois A, Antczak E (2014) A simple method for building materials thermophysical properties estimation. Constr Build Mater 63:197–205. doi:10.1016/j.conbuildmat.2014.04.076

    Article  Google Scholar 

  21. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168

    Article  MathSciNet  MATH  Google Scholar 

  22. Marquardt DW (1953) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  MathSciNet  MATH  Google Scholar 

  23. Özişik N, Orlande HRB (2000) Inverse heat transfer: fundamentals and applications. Taylor & Francis, London

    Google Scholar 

  24. Jiji LM (2009) Heat conduction, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  25. Pérez J-P (1993) Thermodynamique fondements et applications, 1st edn. MASSON, Paris

    Google Scholar 

  26. Crank J (1975) The mathematics of diffusion. Oxford science publications, vol Accessed from http://nla.gov.au/nla.cat-vn2708850. Clarendon Press, Oxford (England)

  27. Özişik MN (1994) Finite difference methods in heat transfer. CRC Press, Boca Raton

    MATH  Google Scholar 

  28. Derbal R (2014) Développement d’une méthode inverse de caractérisation thermique: application à l’estimation des propriétés thermophysiques et hydriques des matériaux de construction. Université d’Artois, Béthune

    Google Scholar 

  29. Mathworks (2012) Nonlinear least squares (Curve Fitting). MathWorks. http://www.mathworks.fr/fr/help/optim/ug/lsqnonlin.html. Accessed Feb 2013

  30. Rao SS (2009) Engineering optimization: theory and practice. Wiley, New York

    Book  Google Scholar 

  31. Kulkarni NG, Bhandarkar UV, Puranik BP, Rao AB (2016) Experimental determination of thermal properties of alluvial soil. Heat and Mass Transf. doi:10.1007/s00231-016-1772-y

    Google Scholar 

  32. Nusier O, Abu-Hamdeh N (2003) Laboratory techniques to evaluate thermal conductivity for some soils. Heat and Mass Transf 39(2):119–123. doi:10.1007/s00231-002-0295-x

    Article  Google Scholar 

  33. ASTM (1991) Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus, vol C518. ASTM Standard C518, WASHINGTON, D.C

  34. Tada S (2005) Simultaneous determination of sorption isotherm and water diffusivity of autoclaved aerated concrete. Conference on autoclaved aerated concrete - innovation and development, vol 1. Texte, Inc., Tokyo, Japan

  35. De Vries DA (1958) Simultaneous transfer of heat and moisture in porous media. Eos Trans Am Geophys Union 39(5):909–916. doi:10.1029/TR039i005p00909

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Derbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbal, R., Defer, D. Thermophysical and hydric properties estimation based on a double inverse analysis. Heat Mass Transfer 53, 1375–1389 (2017). https://doi.org/10.1007/s00231-016-1907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1907-1

Keywords

Navigation