Skip to main content
Log in

Effect of adiabatic square ribs on natural convection in an asymmetrically heated channel

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A 2-D numerical simulation is carried out to investigate the effect of two adiabatic square ribs on laminar flow and heat transfer in an asymmetrically heated channel. The two ribs are symmetrically located on each wall, exactly above the heating zone. The computational procedure is made by solving the unsteady bi-dimensional continuity, momentum and energy equations with the finite volume method. The investigations focused more specifically on the influence of ribs sizes on the flow structure and heat transfer enhancement. The results showed that the variation of ribs sizes significantly alters the heat transfer and fluid flow distribution along the channel, especially in the vicinity of protrusions. Also, the results show that streamlines, isotherms, and the number, sizes and formation of vortex structures inside the channel strongly depend on the size of protrusions. The changes in heat transfer parameters have also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

b :

Channel wall spacing (m)

e :

Rib height (m)

C p :

Specific heat capacity (J/kg K)

g :

Acceleration of gravity (m/s2)

k :

Thermal conductivity (W/m K)

L :

Heated zone length (m)

\(\overline{Nu}\) :

Averaged Nusselt number \(\left( {\overline{Nu} = \frac{{\bar{h}L}}{k}} \right)\)

P* :

Driving pressure (Pa)

Pr :

Prandtl number \(\left( {Pr = \frac{\nu }{\alpha }} \right)\)

Ra :

Rayleigh number \(\left( {Ra = \frac{{g\beta \phi b^{4} }}{{k\nu^{2} }}Pr} \right)\)

Ra*:

Modified Rayleigh number \(\left( {Ra^{*} = \frac{Ra}{{R_{f} }}} \right)\)

R f :

Heated zone aspect ratio \(\left( {R_{f} = \frac{L}{b}} \right)\)

R s :

Ribs size (m)

T :

Dimensional temperature (K)

U, V :

Dimensionless vertical and transversal velocity components

u, v :

Dimensional vertical and transversal velocity components (m/s)

X, Y :

Dimensionless vertical and transversal coordinates

x, y :

Dimensional vertical and transversal coordinates (m)

β :

Volume expansion coefficient (1/K)

\(\varphi\) :

Heat flux density (W/m2)

ρ :

Density (kg/m3)

ν :

Kinematic viscosity (m2/s)

μ :

Dynamic viscosity (Pa s)

Α :

Thermal diffusivity (m2/s)

θ :

Dimensionless temperature \(\theta = \frac{{\left( {T - T_{0} } \right)k}}{\varphi b}\)

W :

Wall

0 :

Reference value

References

  1. Dimoudi A, Androutsopoulos A, Lykoudis S (2004) Experimental work on a linked, dynamic and ventilated, wall component. Energy Build 36:443–453

    Article  Google Scholar 

  2. Manz H, Schaelin A, Simmler H (2004) Airflow patterns and thermal behavior of mechanically ventilated glass double facades. Build Environ 39:1023–1033

    Article  Google Scholar 

  3. Ding W, Hasemi Y, Yamada T (2005) Natural ventilation performance of a double-skin façade with a solar chimney. Energy Build 37:411–418

    Article  Google Scholar 

  4. Safer N (2006) Modélisation des façades de type double-peau équipées de protections solaires: Approches multi-échelles. Ph.D. Thesis, Institut National des Sciences Appliquées, Lyon (in French)

  5. Elenbaas W (1942) Heat dissipation of parallel plates by free convection. Physica 9:1–28

    Article  MATH  Google Scholar 

  6. Bodoia JR, Osterle JF (1962) The development of free convection between heated vertical plates. J Heat Transf 84:40–44

    Article  Google Scholar 

  7. Gan G (1998) A parametric study of Trombe walls for passive cooling of buildings. Energy Build 27:37–43

    Article  Google Scholar 

  8. Habib MA, Said SAM, Ahmed SA, Asghar A (2002) Velocity characteristics of turbulent natural convection in symmetrically and asymmetrically heated vertical channels. Exp Therm Fluid Sci 26:77–87

    Article  Google Scholar 

  9. da Silva AK, Lorenzini G, Bejan A (2005) Distribution of heat sources in vertical open channels with natural convection. Int J Heat Mass Transf 48:1462–1469

    Article  MATH  Google Scholar 

  10. Fossa M, Ménézo C, Leonardi E (2008) Experimental natural convection on vertical surfaces for building integrated photovoltaic (BIPV) applications. Exp Therm Fluid Sci 32:980–990

    Article  Google Scholar 

  11. Ospir D, Popa C, Chereches C, Polidori G, Fohanno S (2012) Flow visualization of natural convection in a vertical channel with asymmetric heating. Int Commun Heat Mass Transf 39:486–493

    Article  Google Scholar 

  12. Popa C, Ospir D, Fohanno S, Chereches C (2012) Numerical simulation of dynamical aspects of natural convection flow in a double-skin façade. Energy Build 50:229–233

    Article  MATH  Google Scholar 

  13. Li R, Bousetta M, Chénier E, Lauriat G (2013) Effect of surface radiation on natural convective flows and onset of flow reversal in asymmetrically heated verticalchannels. Int J Therm Sci 65:9–27

    Article  Google Scholar 

  14. Polidori G, Fatnassi S, Ben Maad R, Fohanno S, Beaumont F (2015) Early-stage dynamics in the onset of free-convective reversal flow in an open-ended channel asymmetrically heated. Int J Therm Sci 88:40–46

    Article  Google Scholar 

  15. Lee KT (1994) Natural convection in vertical parallel plates with an unheated entry or unheated exit. Numer Heat Transf A 25:477–493

    Article  Google Scholar 

  16. Campo A, Manca O, Morrone B (1999) Numerical analysis of partially heated vertical parallel plates in natural convective cooling. Numer Heat Transf A36:129–151

    Google Scholar 

  17. Auletta A, Manca O, Morrone B, Naso V (2001) Heat transfer enhancement by chimney effect in a vertical isoflux channel. Int J Heat Mass Transf 44:4345–4357

    Article  Google Scholar 

  18. Auletta A, Manca O (2002) Heat and fluid flow resulting from the chimney effect in a symmetrically heated vertical channel with adiabatic extensions. Int J Therm Sci 41:1101–1111

    Article  Google Scholar 

  19. Andreozzi A, Buonomo B, Manca O (2005) Numerical study of natural convection in vertical channels with adiabatic extensions downstream. Numer Heat Transf A 47:1–22

    Article  Google Scholar 

  20. Andreozzi A, Buonomo B, Manca O (2009) ‘Thermal management of a symmetrical heated channel-chimney system’. Int J Therm Sci 48:475–487

    Article  Google Scholar 

  21. Andreozzi A, Buonomo B, Manca O (2010) Thermal and fluid dynamic behaviors in symmetrical heated channel-chimney systems. Int J Numer Methods Heat Fluid Flow 20:811–833

    Article  MATH  Google Scholar 

  22. Andreozzi A, Buonomo B, Manca O (2012) Numerical investigation of transient natural convection in a vertical channel-chimney system symmetrically heated at uniform heat flux. Int J Heat Mass Transf 55:6077–6089

    Article  Google Scholar 

  23. Manca O, Musto M, Naso V (2003) Experimental analysis of asymmetrical isoflux channel-chimney systems. Int J Therm Sci 42:837–846

    Article  Google Scholar 

  24. Manca O, Musto M, Naso V (2005) Experimental investigation of natural convection in an asymmetrically heated vertical channel with an asymmetric chimney. ASME J Heat Transf 127:888–896

    Article  Google Scholar 

  25. Nasri Z, Laatar AH, Balti J (2015) Natural convection enhancement in an asymmetrically heatedchannel-chimney system. Int J Therm Sci 90:122–134

    Article  Google Scholar 

  26. Auletta A, Manca O, Musto M, Nardini S (2003) Thermal design of symmetrically and asymmetrically heated channel-chimney systems in natural convection. Appl Therm Eng 23:605–621

    Article  Google Scholar 

  27. Aihara T (1996) Augmentation of free convection heat transfer between vertical parallel plates by inserting an auxiliary plate. In: Proceedings of the 2nd European Thermal Sciences Conference, Rome, Italy

  28. Andreozzi A, Manca O (2001) Thermal and fluid dynamic behavior of symmetrically heated vertical channels with auxiliary plate. Int J Heat Fluid Flow 22:424–432

    Article  Google Scholar 

  29. Andreozzi A, Manca O, Naso V (2002) Natural convection in vertical channels with an auxiliary plate. Int J Numer Methods Heat Fluid Flow 12(6):716–734

    Article  MATH  Google Scholar 

  30. Taieb S, Laatar AH, Balti J (2013) Natural convection in an asymmetrically heated vertical channel with an adiabatic auxiliary plate. Int J Therm Sci 74:24–36

    Article  Google Scholar 

  31. Habchi S, Acharya S (1986) Laminar mixed convection in a partially blocked, vertical channel. Int J Heat Mass Transf 29:1711–1722

    Article  Google Scholar 

  32. Hung YH, Shiau WM (1988) Local steady-state natural convection heat transfer in vertical parallel plates with a two-dimensional rectangular rib. Int J Heat Mass Transf 31:1279–1288

    Article  Google Scholar 

  33. Tanda G (1997) Natural convection heat transfer in vertical channels with and without transverse square ribs. Int J Heat Mass Transf 40:2173–2185

    Article  Google Scholar 

  34. Desrayaud G, Fichera A (2002) Laminar natural convection in a vertical isothermal channel with symmetric surface-mounted rectangular ribs. Int J Heat Fluid Flow 23:519–529

    Article  Google Scholar 

  35. Tanda G (2008) Natural convective heat transfer in vertical channels with low-thermal-conductivity ribs. Int J Heat Fluid Flow 29:1319–1325

    Article  Google Scholar 

  36. Desrayaud G, Chénier E, Joulin A, Bastide A, Brangeon B, Caltagirone JP, Cherif Y, Eymard R, Garnier C, Giroux-Julien S, Harnane Y, Joubert P, Laaroussi N, Lassue S, Le Quéré P, Li R, Saury D, Sergent A, Xin S, Zoubir A (2013) Benchmark solutions for natural convection flows in vertical channels submitted to different open boundary conditions. Int J Therm Sci 72:18–33

    Article  Google Scholar 

  37. Gray DD, Giorgini A (1976) The validity of the Boussinesq approximation for liquids and gases. Int J Heat Mass Transf 19:545–551

    Article  MATH  Google Scholar 

  38. Bejan A (1984) Convection heat transfer. Wiley-Interscience, New York

    MATH  Google Scholar 

  39. Garnier C (2014) Modélisation numérique des écoulements ouverts de convection naturelle au sein d’un canal vertical asymétriquement chauffé. Ph.D. Thesis, University of Pierre and Marie Curie, France

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aissa Abidi-Saad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abidi-Saad, A., Kadja, M., Popa, C. et al. Effect of adiabatic square ribs on natural convection in an asymmetrically heated channel. Heat Mass Transfer 53, 743–752 (2017). https://doi.org/10.1007/s00231-016-1853-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1853-y

Keywords

Navigation