Skip to main content
Log in

Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Area (m2)

C :

Adsorption capacity on mass basis (cm3/kg)

C o :

Maximum adsorption capacity on mass basis (cm3/kg)

c p :

Specific heat (kJ/kg K)

D s :

Surface diffusion coefficient (m2/s)

D s0 :

Pre-exponential coefficient (m2/s)

E :

Characteristic energy (kJ/kg)

E a :

Activation energy (kJ/kg)

F :

Constant

h fg :

Latent heat (kJ/kg)

H st :

Isosteric heat of adsorption (kJ/kg)

K :

Thermal conductivity (W/m K)

m :

Mass (kg)

:

Mass flow rate (kg/s)

n :

Exponential fitting parameter

P :

Pressure (kPa)

P s :

Saturation pressure (kPa)

R :

Universal gas constant (kJ/kg K)

R p :

Maximum radius of the particle (m)

T :

Temperature (K)

t :

Time (s)

U :

Overall heat transfer coefficient (W/m2 K)

α :

Thermal expansion (1/K)

ac :

Activated carbon

ads :

Adsorption

b :

Bed

bed :

Adsorption bed

c :

Condenser

chill :

Chilled water

des :

Desorption

ev :

Evaporator

g :

Gas

h :

Heating water

hex :

Heat exchanger

in :

Inlet

out :

Outlet

ref :

Refrigerant

reg :

Regeneration

s :

Saturation

sol :

Solid

sur :

Surrounding

w :

Water

References

  1. Wongsuwan W, Kumar S, Neveu P, Meunier F (2001) A review of chemical heat pump technology and applications. Appl Therm Eng 2:1489–1519

    Article  Google Scholar 

  2. Demir H, Mobedi M, Ülkü S (2008) A review on adsorption heat pump: problems and solutions. Renew Sust Energy Rev 12:2381–2403

    Article  Google Scholar 

  3. Alghoul MA, Sulaiman MY, Azmi BZ, Wahab MA (2007) Advances on multi-purpose solar adsorption systems for domestic refrigeration and water heating. Appl Therm Eng 27:813–822

    Article  Google Scholar 

  4. Li XH, Hou XH, Zhang X, Yuan XZ (2015) A review on development of adsorption cooling—novel beds and advanced cycles. Energy Convers Manage 94:221–232

    Article  Google Scholar 

  5. Jribi S, Saha BB, Koyama S, Bentaher H (2014) Modeling and simulation of an activated carbon–CO2 four bed based adsorption cooling system. Energy Convers Manage 78:985–991

    Article  Google Scholar 

  6. Askalany AA, Saha BB, Ahmed MS, Ismail IM (2013) Adsorption cooling system employing granular activated carbon-R134a pair for renewable energy applications. Int J Refrig 36:1037–1044

    Article  Google Scholar 

  7. Askalany AA, Salem M, Ismael IM, Ali AHH, Morsy MG (2012) A review on adsorption cooling systems with adsorbent carbon. Renew Sust Energy Rev 16:493–500

    Article  Google Scholar 

  8. Li TX, Wang RZ, Li H (2014) Progress in the development of solid-gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy. Prog Energy Combust Sci 40:1–58

    Article  Google Scholar 

  9. Cho K, Ziegler F, Auracher H (2009) Progress in sorptive cooling systems. Int J Refrig 32:563–565

    Article  Google Scholar 

  10. Critoph RE, Zhong Y (2005) Review of trends in solid sorption refrigeration and heat pumping technology. Proc Inst Mech Eng E J 219:285–300

    Article  Google Scholar 

  11. Ziegler F, Satzger P (2005) Increase of the efficiency of the heat transfer phase in solid sorption or reaction systems. Int J Therm Sci 44:1115–1122

    Article  Google Scholar 

  12. Askalany AA, Salem M, Ismael IM, Ali AHH, Morsy MG (2012) Experimental study on adsorption-desorption characteristics of granular activated carbon/R134a pair. Int J Refrig 35(3):494–498

    Article  Google Scholar 

  13. Tokarev MM, Veselovskaya JV, Yanagi H, Aristov YuI (2010) Novel ammonia sorbents “porous matrix modified by active salt” for adsorptive heat transformation: 2. Calcium chloride in ACF felt. Appl Therm Eng 30:845–849

    Article  Google Scholar 

  14. Oliveira RG, Wang RZ, Li TX (2010) Adsorption characteristic of methanol in activated carbon impregnated with lithium chloride. Chem Eng Technol 33:1679–1686

    Article  Google Scholar 

  15. Saha BB, Chakraborty A, Koyama S, Aristov YuI (2009) A new generation cooling device employing CaCl2-in-silica gel-water system. Int J Heat Mass Transf 52:516–524

    Article  MATH  Google Scholar 

  16. Aristov YuI, Chalaev DM, Dawoud B, Heifets LI, Popel OS, Restuccia G (2007) Simulation and design of a solar driven thermochemical refrigerator using new chemisorbents. Chem Eng J 134:58–65

    Article  Google Scholar 

  17. Saha BB, El-Sharkawy II, Koyama S, Lee JB, Kuwahara K (2006) Waste heat driven multi-bed adsorption chiller: heat exchangers overall thermal conductance on chiller performance. Heat Transf Eng 27:80–87

    Article  Google Scholar 

  18. Anyanwu EE (2003) Review of solid adsorption solar refrigerator I: an overview of the refrigeration cycle. Energy Convers Manage 44:301–312

    Article  Google Scholar 

  19. Attan D, Alghoul MA, Saha BB, Assadeq J, Sopian K (2011) The role of activated carbon fiber in adsorption cooling cycles. Renew Sust Energy Rev 15:1708–1721

    Article  Google Scholar 

  20. Li TX, Wang RZ, Kiplagat JK, Chen H, Wang LW (2011) A new target-oriented methodology of decreasing the regeneration temperature of solid-gas thermochemical sorption refrigeration system driven by low-grade thermal energy. Int J Heat Mass Transf 54:4719–4729

    Article  Google Scholar 

  21. Sah RP, Choudhury B, Das RK (2015) A review on adsorption cooling systems with silica gel and carbon as adsorbents. Renew Sust Energy Rev 45:123–134

    Article  Google Scholar 

  22. Askalany AA, Saha BB, Uddin K, Miyzaki T, Koyama S, Srinivasan K, Ismail IM (2013) Adsorption isotherms and heat of adsorption of difluoromethane on activated carbons. J Chem Eng Data 58(10):2828–2834

    Article  Google Scholar 

  23. Askalany AA, Saha BB (2015) Experimental and theoretical study of adsorption kinetics of Difluoromethane onto activated carbons. Int J Refrig 49:160–168

    Article  Google Scholar 

  24. Askalany AA, Salem M, Ismael IM (2014) Adsorption isotherms and kinetics of HFC410A onto activated carbons. Appl Therm Eng 72:237–243

    Article  Google Scholar 

  25. Habib K, Saha BB, Chakraborty A, Koyama S, Srinivasan K (2011) Performance evaluation of combined adsorption refrigeration cycles. Int J Refrig 34:129–137

    Article  Google Scholar 

  26. Turner L (1972) Improvement of activated charcoal-ammonia adsorption heat pumping/refrigeration cycles. Investigation of porosity and heat/mass transfer characteristics. Ph.D. thesis, University of Warwick

  27. Critoph RE, Turner L (1995) Heat transfer in granular activated carbon beds in the presence of adsorbable gases. J Hear Mass Transf 38(9):1577–1585

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Askalany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askalany, A.A., Saha, B.B. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane. Heat Mass Transfer 53, 107–114 (2017). https://doi.org/10.1007/s00231-016-1808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1808-3

Keywords

Navigation