Skip to main content
Log in

On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Closed form approximate solutions to nonlinear transient heat conduction with linearly temperature-dependent thermal diffusivity have been developed by the integral-balance integral method under transient conditions. The solutions uses improved direct approaches of the integral method and avoid the commonly used linearization by the Kirchhoff transformation. The main steps in the new solutions are improvements in the integration technique of the double-integration technique and the optimization of the exponent of the approximate parabolic profile with unspecified exponent. Solutions to Dirichlet and Neumann boundary condition problems have been developed as examples by the classical Heat-balance integral method (HBIM) and the Double-integration method (DIM). Additional examples with HBIM and DIM solutions to cases when the Kirchhoff transform is initially applied have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(A_{s} = a_{0} \beta^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}\) :

Effective coefficient in Eqs. (53a, b) (m2/s \({\text{K}}^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}}\))

a :

Thermal diffusivity (m2/s)

a 0 :

Thermal diffusivity of the linear problem (β = 0) (m2/s)

a p :

Thermal diffusivity coefficient in the case of power-law non-linear relationship (Eqs. 9, 10) (m2/s)

b :

Coefficient in Eq. (24b) which should be defined trough the initial condition \(\delta \;\left( {t = 0} \right) = 0\)

C p :

Specific heat capacity (J/kg)

\(E_{L} \;\left( {n,\beta ,t} \right)\) :

Squared-error function in accordance with the Langford criterion (Eq. 34)

\(E_{LT} \left( {n,\beta ,t} \right)\) :

Squared-error function in accordance with the Langford criterion (Eq. 35)

\(E_{Mq} \;\left( {p,\beta ,t} \right)\) :

Squared-error function in accordance with the Langford criterion and fixed flux BC problem (Eq. 76)

\(e_{LT} \;\left( {n,\beta ,t} \right)\) :

Squared-error sub-function in accordance with the Langford criterion (Eq. 35)

\(e_{Lq} \;\left( {p,\beta } \right)\) :

Squared-error sub-function in accordance with the Langford criterion and the fixed flux BC problem

k :

Thermal conductivity (W/mK)

k (T):

Temperature-dependent thermal conductivity (W/mK)

k 0 :

Thermal conductivity of the linear problem (β = 0) (W/mK)

m :

Dimensionless parameter of the nonlinearity (power-law diffusivity)

n :

Dimensionless exponent of the parabolic profile

p :

Dimensionless exponent of the parabolic profile of the assumed profile used to solve Eq. (48) (m)

\(q_{0}\) :

Heat flux surface density (W/m2)

s :

Dimensionless exponent of the parabolic profile of the assumed profile used to solve Eq. (63) (m)

T :

Temperature (K)

T a :

Approximate temperature (K)

T s :

Surface temperature (at x = 0) (K)

T 0 :

Initial temperature of the medium (K)

T ref :

Reference temperature (K)

t :

Time (s)

\(X = {x \mathord{\left/ {\vphantom {x \delta }} \right. \kern-0pt} \delta }\) :

Normalized length variable (dimensionless)

x :

Space coordinate (m)

u :

Dimensionless temperature (fixed temperature boundary condition problem)

u a :

Approximate dimensionless temperature

u e  (numeric):

Numeric solution

u e  (numeric) – FD :

Numeric solution (finite differences) (or \(u_{num} - FD\))

u e  (numeric) – RK − 4:

Numeric solution (Runge–Kutta) (or \(U_{num} - RK\))

\(U = 1 + \beta T\) :

Dimensionless variable (fixed flux BC problem) (Eq. 48)

\(Y\;\left( {\xi ,t} \right)\) :

Dimensionless approximate profile (fixed flux BC problem) expressed through the Zener’s coordinate

W a :

Surface temperature of the approximate profile as a solution of the linearized equation after the Kirchhoff transform

W s :

Approximate profile as a solution of the linearized equation after the Kirchhoff transform

w :

Kirchhoff transforms defined and used in Eq. (2)

\(\alpha\) :

Shifted thermal diffusivity \(\left( {\alpha = a - a_{0} } \right)\) (see Eq. 62) (m2/s)

\(\gamma\) :

Thermal coefficient in Eq. (61a) (W/mK2)

\(\delta\) :

Thermal penetration depth (m)

\(\delta_{s(HBIM)}^{q}\) :

Thermal penetration depth in case of fixed flux BC and HBIM solution (solution of Eq. 63) (m)

\(\delta_{s(DIM)}^{q}\) :

Thermal penetration depth in case of fixed flux BC and DIM solution (solution of Eq. 63) (m)

\(\delta_{{\left( {HBIM} \right)}}^{T}\) :

Thermal penetration depth in case of fixed temperature BC and HBIM solution (m)

\(\delta_{{\left( {DIM} \right)}}^{T}\) :

Thermal penetration depth in case of fixed temperature BC and DIM solution (m)

\(\delta_{U}\) :

Penetration depth of the assumed profile used to solve Eq. (48) (m)

\(\delta_{W}\) :

Penetration depth of the approximate profile as a solution of the linearized equation after the Kirchhoff transform

\(\Phi _{q} \;\left( {\xi ,t} \right)\) :

Error function of the heat conduction equation expressed through the Zener’s coordinate (Eq. 74) and the fixed flux BC problem

\(\varphi \;\left( {u_{a} (x,t)} \right)\) :

Error function defined by Eq. (30)

\(\varphi_{T} \;\left( {u_{a} (x,t)} \right)\) :

Error function defined by Eq. (32) for the case of fixed temperature BC problem

\(\eta = {x \mathord{\left/ {\vphantom {x {\sqrt {at} }}} \right. \kern-0pt} {\sqrt {at} }}\) :

Boltzmann similarity variable (dimensionless)

\(\rho\) :

Density (kg/m3)

\(\Theta _{a}\) :

Normalized surface temperature (Eq. 68)

\(\theta\) :

Excess temperature \(\theta = \left( {T - T_{ref} } \right)\) in Eq. (63)

\(\theta_{a}\) :

Assumed profile used to solve Eq. (63) (fixed flux boundary condition problem) (m)

\(\theta_{s}\) :

Surface temperature of the assumed profile used to solve Eq. (63) (fixed flux boundary condition problem) (m)

\(\xi = {x \mathord{\left/ {\vphantom {x \delta }} \right. \kern-0pt} \delta }\) :

Dimensionless Zener’s coordinate

BC:

Boundary condition

DIM:

Double-integration method

HBIM:

Heat-balance integral method

References

  1. Goodman TR (1964) Application of integral methods to transient nonlinear heat transfer. In: Irvine TF, Hartnett JP (eds) Advances in heat transfer, vol 1. Academic Press, San Diego, pp 51–122

    Google Scholar 

  2. Volkov VN, Li-Orlov VK (1970) A refinement of the integral method in solving the heat conduction equation. Heat Transf Sov Res 2:41–47

    Google Scholar 

  3. Myers JG (2009) Optimizing the exponent in the heat balance and refined integral methods. Int Commun Heat Mass Transf 36:143–147

    Article  Google Scholar 

  4. Cobble MH (1967) Non-linear heat transfer if solids in orthogonal coordinate systems. Int J Non-Linear Mech 2:417–4126

    Article  MATH  Google Scholar 

  5. Sucec J, Hedge S (1978) Transient conduction in slab with temperature dependent thermal conductivity. Trans ASME 100:172–174

    Article  Google Scholar 

  6. Lin SH (1978) Transient heat conduction with temperature-dependent thermal conductivity by the orthogonal collocation method. Lett Heat Mass Transf 5:29–39

    Article  Google Scholar 

  7. Noda N (1993) Thernal stresses in materials with temperature dependent properties. In: Schneider GA, Petzow G (eds) Thermal shock and thermal fatigue behaviour of advanced ceramics. Kluwer Academics Publ, Dordrecht, The Netherlands, pp 15–26

    Chapter  Google Scholar 

  8. Khaleghi H, Gandji DD, Sadighi A (2007) Application of variational iteration and homotopy-perturbation methods to nonlinear heat transfer equations with variable coefficients. Numer Heat Transf A 52:25–42

    Article  Google Scholar 

  9. Liu W, Li L, Yue J, Liu H, Yang L (2015) A kind of analytical model of arc welding temperature distribution under varying material properties. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7260-6

    Google Scholar 

  10. Aziz A, Benzies JY (1976) Application of perturbation techniques for heat-transfer problems with variable thermal properties. Int J Heat Mass Transf 19:271–2716

    Article  Google Scholar 

  11. Aziz A (1977) Perturbation solution for convective fin with internal heat generation and temperature dependent thermal conductivity. Int J Heat Mass Transf 20:1253–1255

    Article  Google Scholar 

  12. Krajewwski B (1975) On a direct variational method for nonlinear heat transfer. Int J Heat Mass Transf 18:495–502

    Article  Google Scholar 

  13. Aziz A, Bouaziz MN (2011) A least square method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Convers Manag 52:2876–2882

    Article  Google Scholar 

  14. Alhama F, Zueco J (2007) Application of a lumped model to solids with linearly temperature-dependent thermal conductivity. Appl Math Model 31:302–310

    Article  MATH  Google Scholar 

  15. Mehta RC (1979) On the solution of transient conduction with temperature-dependent thermal conductivity. J Heat Transf 99:137–139

    Article  Google Scholar 

  16. Das R, Mishra SC, Uppaluri R (2009) Retrieval of thermal properties in a transient conduction-radiation problem with variable thermal conductivity. Int J Heat Mass Transf 52:2749–2758

    Article  MATH  Google Scholar 

  17. Parveen N, Alim MA (2013) MHD free convection flow with temperature dependent thermal conductivity in presence of heat absorption along a vertical wavy surface. Proc Eng 56:68–75

    Article  Google Scholar 

  18. Tomatis D (2013) Heat conduction in nuclear fuel by the Kirchhoff transformation. Ann Nucl Energy 57:100–105

    Article  Google Scholar 

  19. Chang KC, Payne UJ (1990) Analytical and numerical approaches for heat conduction in composite materials. Math Comput Model 14:899–904

    Article  MATH  Google Scholar 

  20. Chang KC, Payne UJ (1991) Analytical solution for heat conduction in a two-material-layer slab with linearly temperature dependent conductivity. J Heat Transf 113:237–239

    Article  Google Scholar 

  21. Pipes LP (1958) Applied mathematics for engineers and scientists, 2nd edn. McGraw-Hill, New York, USA, p 18

    Google Scholar 

  22. Khan ZH, Gul R, Khan WA (2008) Effect of variable thermal conductivity on heat transfer from a hollow sphere with heat generation using homotopy perturbation method. In: Proceedings of ASME Summer Heat Transfer Conference, 2008 August 1–14, Article HT2008-56448, Jacksonville, Florida, USA

  23. Yen YC (1989) Approximate solutions of heat conduction in snow with linear variation of thermal conductivity. Cold Regions Sci Technol 17:21–32

    Article  Google Scholar 

  24. Hristov J (2015) An approximate analytical (integral-balance) solution to a nonlinear heat diffusion equation. Therm Sci 19:723–733

    Article  Google Scholar 

  25. Hristov J (2016) Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions. Heat Mass Transf 52:635–655. doi:10.1007/s00231-015-1579-2

    Article  Google Scholar 

  26. Hristov J (2009) The heat-balance integral method by a parabolic profile with unspecified exponent: analysis and benchmark exercises. Therm Sci 13:27–48

    Article  MathSciNet  Google Scholar 

  27. Mitchell SL, Myers TG (2010) Application of standard and refined heat balance integral methods to one-dimensional Stefan problems. SIAM Rev 52:57–86

    Article  MathSciNet  MATH  Google Scholar 

  28. Sadoun N, Si-Ahmed EK, Colinet P (2006) On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions. Appl Math Model 30:531–544

    Article  MATH  Google Scholar 

  29. Mitchell SL, Myers TG (2008) A heat balance integral method for one-dimensional finite ablation. AIAA J. Thermophys 22:508–514

    Article  Google Scholar 

  30. Hristov J (2015) Approximate solutions to time-fractional models by integral balance approach. In: Cattani C, Srivastava HM, Yang X-J (eds) Fractional dynamics. De Gruyter Open, Warsaw, pp 78–109

    Google Scholar 

  31. Hristov J (2016) Double integral-balance method to the fractional subdiffusion equation: approximate solutions, optimization problems to be resolved and numerical simulations. J Vib Control. doi:10.1177/1077546315622773 (in press)

    Google Scholar 

  32. Ames WF (1965) Nonlinear partial differential equation in engineering. Academic Press, NY

    MATH  Google Scholar 

  33. Prasad SN, Salomon JB (2005) A new method for analytical solution of a degenerate diffusion equation. Adv Water Res 28:1091–1101

    Article  Google Scholar 

  34. Langford D (1973) The heat balance integral method. Int J Heat Mass Transf 16:2424–2428

    Article  Google Scholar 

  35. Shelton SM (1934) Thermal conductivity of some iron and steel over the temperature 100 to 500 °C. Bur Stand J Res 12(4):441

    Article  Google Scholar 

  36. Pohlhausen K (1921) Zur naherungsweisen Integration der Differentialgleichunger der laminaren Grenzschicht. J Appl Math Mech ZAMM 1:252–290

    Article  MATH  Google Scholar 

  37. Lacey AA, Ockendon JR, Tayler AB (1982) Waiting-time solutions of a nonlinear diffusion equation. SIAM J Appl Math 42:1252–1264

    Article  MathSciNet  MATH  Google Scholar 

  38. Hill JM (1989) Similarity solutions for nonlinear diffusion—a new integration procedure. J Eng Math 23:141–155

    Article  MathSciNet  MATH  Google Scholar 

  39. Smyth NF, Hill JM (1988) High-order nonlinear diffusion. IMA J Appl Math 40:73–86

    Article  MathSciNet  MATH  Google Scholar 

  40. Zt Y, Xu X, Fan LW, Hu YC, Cen KF (2011) Experimental measurements of thermal conductivity of wood species in China: effects of density, temperature and moisture content. For Prod J 61:130–135

    Google Scholar 

  41. Aksöz S, Öztürk E, Marasli N (2012) The measurement of thermal conductivity variation with temperature for solid materials. Elsevier Meas 46:161–170

    Article  Google Scholar 

  42. Zener C (1949) Theory of growth of spherical precipitates from solid solutions. J Appl Phys 20:950–953

    Article  Google Scholar 

Download references

Acknowledgments

Mrs. Antoine Fabre appreciates the possibility offered by ENS Cachan to perform his M1 student internship in UCTM, Sofia, Bulgaria under the supervision of Prof. J. Hristov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Hristov.

Appendices

Appendix 1: Fixed temperature problem: the numerical solutions used

  • Finite difference solution

In order to validate the approximate integral-balance solutions, two numerical solutions were developed for the benchmarking procedures. The first numerical solution is found thanks to the method of finite difference, where an explicit scheme, due to its numerical stability and good convergence, was used. In additions, with a time step \(\Delta t = 1/100\) and a space step \(\Delta x = 1/50\) we got a good accuracy. In this contexts, in the approximation of Eq. (15) (with initial and boundary conditions \(u\left( {x,0} \right) = 0\) and \(u\left( {0,t} \right) = 1\) q \(u\left( {\delta ,t} \right) = 0\)) the error due to the numerical approximation is relatively high when for x is close to 0 but decreased rapidly when x increases. This high error close to 0 is due to the impossibility to calculate the derivative of u at 0.

  • Runge–Kutta solution

With the Boltzmann transform \(\eta = {x \mathord{\left/ {\vphantom {x {\sqrt {a_{0} t} }}} \right. \kern-0pt} {\sqrt {a_{0} t} }}\) and \(X = x/\delta = \eta /f(n)\) we may express Eq. (15) in the forms

$$X\frac{{f(n)^{2} }}{2}\frac{\partial u(X)}{\partial X} + \frac{\beta }{1 + \beta u(X)}\left( {\frac{\partial u(X)}{\partial X}} \right)^{2} + \frac{{\partial^{2} u(X)}}{{\partial X^{2} }} = 0,\quad f\left( n \right) \ne 1$$
(84)
$$\begin{aligned} &\frac{1}{2}\frac{\partial u(\eta )}{\partial \eta } + \frac{\beta }{1 + \beta u(\eta )}\left( {\frac{\partial u(\eta )}{\partial \eta }} \right)^{2} + \frac{{\partial^{2} u(\eta )}}{{\partial \eta^{2} }} = 0,\\&\quad f\left( n \right) = 1\;{\text{and}}\;\eta = X \end{aligned}$$
(85)

The normalizing function \(f(n)\) is introduced for consistency with the concept of the finite penetration depth \(\delta\) which is missing in the classical solution of the linear equation expressed by the Gaussian error function. In fact, with \(f\left( n \right) \ne 1\) the initial problem is transformed to a boundary value problem with \(u(X = 0) = 1\) and \(u(X = 1) = 0\) allowing to compare the integral-balance solutions with the numerical ones in the domain \(0 \le X \le 1\). The solutions were developed by Maple 13 where Runge–Kutta solutions of 4th order are possible with absolute error less than \(10^{ - 6}\). The normalizing function \(f(n)\) for each β is expressed through the optimal n developed by minimization of the residual function (see Tables 2, 3) and it is equal either to \(F_{HBIM}^{T} \left( {n,\beta } \right)\) or \(F_{DIM}^{T} \left( {n,\beta } \right)\) (see Eqs. 27, 28), depending on the integration method applied.

Appendix 2: Fixed flux problem: the derivations of the approximations (43) and (44) HBIM solution

The equation about the penetration depth is developed by HBIM solution is (42), namely

$$\delta^{3} - \delta \left( {a_{0} t} \right)n\left( {n + 1} \right) - \beta \frac{{q_{0} }}{{k_{0} }}\left( {a_{0} t} \right)^{2} n\left( {n + 1} \right)^{2} = 0$$
(42)

For β = 0, it reduces to \(\delta_{{0\left( {HBIM} \right)}}^{q} = \delta_{0}^{{}} = \sqrt {\left( {a_{0} t} \right)n\left( {n + 1} \right)}\) which is the classical HBIM solution [3, 26]. Denoting \(\delta_{0}^{2} = \left( {a_{0} t} \right)n\left( {n + 1} \right) = \alpha_{1} > 0\) and \(\beta \frac{{q_{0} }}{{k_{0} }}\left( {a_{0} t} \right)^{2} n\left( {n + 1} \right)^{2} = \alpha_{2} > 0\) we get a depressed cubic equation about \(\delta \left( t \right)\), namely

$$\delta^{3} - \alpha_{1} \delta - \alpha_{2} = 0$$
(86)

The coefficients of (84) are related as \(\alpha_{2} = \alpha_{1}^{2} \beta \left( {{{q_{0} } \mathord{\left/ {\vphantom {{q_{0} } {k_{0} n}}} \right. \kern-0pt} {k_{0} n}}} \right)\).

Now, let us suggest that the penetration depth for \(\beta \ne 0\) is related to the \(\delta_{0}^{2} = \left( {a_{0} t} \right)n\left( {n + 1} \right)\) by a correctional functional \(f_{3} \left( {n,t} \right)\) that is \(\delta^{2} = \delta_{0}^{2} f_{3}^{2}\). Now, we may rearrange (86) as

$$\delta_{0}^{3} f_{3}^{3} - \delta_{0}^{3} f_{3} - \delta_{0}^{4} \beta \frac{{q_{0} }}{{k_{0} }}\frac{1}{n} = 0 \Rightarrow f_{3}^{3} - f_{3} - \delta_{0}^{{}} \beta \frac{{q_{0} }}{{k_{0} }}\frac{1}{n} = 0$$
(87a, b)

For β = 0 it follows directly that \(f_{3} = 1\) is a solution of Eq. (87a, b). The solution of the cubic equation \(f_{3}^{3} = Af_{3} + B\) depends upon the sign of the determinant \(D = \frac{{A^{3} }}{27} + \frac{{B^{2} }}{4}\). For D > 0 the equation has one real root and two imaginary roots. Since we need a unique real solution of the penetration depth, then D > 0 is the case. With A = 1 and \(B = \delta_{0}^{{}} \beta \frac{{q_{0} }}{{k_{0} }}\frac{1}{n}\) we get

$$D = \frac{{A^{3} }}{27} + \frac{{B^{2} }}{4} = \delta_{0}^{2} \left( {\beta \frac{{q_{0} }}{{k_{0} }}\frac{1}{n}} \right)^{2} \left[ {1 - \frac{1}{27}\frac{1}{{\delta_{0}^{2} }}\left( {\frac{2}{\beta }\frac{{k_{0} }}{{q_{0} }}n} \right)^{2} } \right]$$
(88)

Therefore, the Cardano formula is \(f_{3} = M + N\), where

$$M = \left( { - \frac{B}{2} + \sqrt D } \right)^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}} = \left( {\delta_{0}^{{}} \beta \frac{{q_{0} }}{{k_{0} }}\frac{1}{n}} \right)^{{\frac{1}{3}}} \left[ {\frac{1}{2} + \sqrt {1 - \frac{1}{27}\frac{1}{{\delta_{0}^{2} }}\left( {\frac{1}{\beta }\frac{{k_{0} }}{{q_{0} }}n} \right)^{2} } } \right]^{{\frac{1}{3}}}$$
(89a)
$$N = \left( { - \frac{B}{2} - \sqrt D } \right)^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}} = \left( {\delta_{0}^{{}} \beta \frac{{q_{0} }}{{k_{0} }}\frac{1}{n}} \right)^{{\frac{1}{3}}} \left[ {\frac{1}{2} - \sqrt {1 - \frac{1}{27}\frac{1}{{\delta_{0}^{2} }}\left( {\frac{1}{\beta }\frac{{k_{0} }}{{q_{0} }}n} \right)^{2} } } \right]^{{\frac{1}{3}}}$$
(89b)
$$\begin{aligned} f_{3} & = \left( {\delta_{0}^{{}} \beta \frac{{q_{0} }}{{k_{0} }}\frac{1}{n}} \right)^{{\frac{1}{3}}} \\ & \quad \times \left\{ {\left[ {\frac{1}{2} + \sqrt {1 - \frac{1}{27}\frac{1}{{\delta_{0}^{2} }}\left( {\frac{1}{\beta }\frac{{k_{0} }}{{q_{0} }}n} \right)^{2} } } \right]^{{\frac{1}{3}}} + \left[ {\frac{1}{2} - \sqrt {1 - \frac{1}{27}\frac{1}{{\delta_{0}^{2} }}\left( {\frac{1}{\beta }\frac{{k_{0} }}{{q_{0} }}n} \right)^{2} } } \right]^{{\frac{1}{3}}} } \right\} \\ \end{aligned}$$
(90a)

In (90a) the denominators of the second terms under the radicals grow in time rapidly because \(\delta_{0}^{2} \equiv a_{0} t\). From this point of view, we may suggest that they could be neglected as smaller than 1 and this step allows to approximate f 3 as

$$f_{3} \approx \left( {\delta_{0}^{{}} \beta \frac{{q_{0} }}{{k_{0} }}\frac{1}{n}} \right)^{{\frac{1}{3}}} \left[ {\left( {\frac{1}{2}} \right)^{{\frac{1}{3}}} + \left( {\frac{1}{2}} \right)^{{\frac{1}{3}}} } \right] \approx \left( {\delta_{0}^{{}} \frac{\beta }{4}\frac{{q_{0} }}{{k_{0} }}\frac{1}{n}} \right)^{{\frac{1}{3}}}$$
(90b)

Then the penetration depth \(\delta \left( t \right)\) can be expressed as

$$\delta \left( t \right) = \delta_{0} f_{3} \approx \delta_{0} \left( {\delta_{0}^{{}} \frac{\beta }{4}\frac{{q_{0} }}{{k_{0} }}\frac{1}{n}} \right)^{{\frac{1}{3}}} \approx \delta_{0}^{{\frac{4}{3}}} \left( {\frac{\beta }{4}\frac{{q_{0} }}{{k_{0} }}\frac{1}{n}} \right)^{{\frac{1}{3}}}$$
(91a, b)

With the square-root expression of \(\delta_{0} \left( t \right)\) inserted in (91b) we get (92) (that is the approximation (Eq. 43 in the main text)

$$\delta \left( t \right) \approx \left( {a_{0} t} \right)^{{\frac{2}{3}}} \left[ {n^{{\frac{1}{3}}} \left( {n + 1} \right)^{{\frac{2}{3}}} } \right]\left( {\frac{\beta }{4}\frac{{q_{0} }}{{k_{0} }}} \right)^{{\frac{1}{3}}}.$$
(92)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabre, A., Hristov, J. On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity. Heat Mass Transfer 53, 177–204 (2017). https://doi.org/10.1007/s00231-016-1806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1806-5

Navigation