Skip to main content
Log in

Cautions required for the boiling test of a silver–water nanofluid

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Various experimental works have been reported on boiling of nanofluids, and some contradictory data are reported in this case in the literature. Systematic errors in experiments may be one of the factors causing a significant gap in the data. In this paper, boiling of Ag–water nanofluid is studied empirically. A NiCr wire is used for the experiments. According to UV–Vis absorption spectra data, Ag–water nanofluid changes during the tests. Since the electrical resistance–temperature relationship for the NiCr test section changes during the experiments, the wire temperature cannot be determined by this method. This can be accounted for by the presence of a porous nanoparticle layer created through particle deposition during nucleate boiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed 231:99–106

    Google Scholar 

  2. Incropera FP (2011) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  3. Barber J, Brutin D, Tadrist L (2011) A review on boiling heat transfer enhancement with nanofluids. Nanoscale Res Lett 6:1–16

    Article  Google Scholar 

  4. Fang X, Wang R, Chen W, Zhang H, Ma C (2015) A review of flow boiling heat transfer of nanofluids. Appl Therm Eng 91:1003–1017

    Article  Google Scholar 

  5. Kshirsagar J, Shrivastava R (2015) Review of the influence of nanoparticles on thermal conductivity, nucleate pool boiling and critical heat flux. Heat Mass Transf 51:381–398. doi:10.1007/s00231-014-1412-3

    Article  Google Scholar 

  6. Ciloglu D, Bolukbasi A (2015) A comprehensive review on pool boiling of nanofluids. Appl Therm Eng 84:45–63

    Article  Google Scholar 

  7. Taylor RA, Phelan PE (2009) Pool boiling of nanofluids: comprehensive review of existing data and limited new data. Int J Heat Mass Transf 52:5339–5347

    Article  Google Scholar 

  8. Kamatchi R, Venkatachalapathy S (2015) Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux: a review. Int J Therm Sci 87:228–240

    Article  Google Scholar 

  9. Li X, Yuan Y, Tu J (2015) A parametric study of the heat flux partitioning model for nucleate boiling of nanofluids. Int J Therm Sci 98:42–50

    Article  Google Scholar 

  10. Sayahi T, Tatar A, Bahrami M (2016) A RBF model for predicting the pool boiling behavior of nanofluids over a horizontal rod heater. Int J Therm Sci 99:180–194

    Article  Google Scholar 

  11. Li X, Yuan Y, Tu J (2015) A theoretical model for nucleate boiling of nanofluids considering the nanoparticle Brownian motion in liquid microlayer. Int J Heat Mass Transf 91:467–476

    Article  Google Scholar 

  12. Bi J, Vafai K, Christopher DM (2015) Heat transfer characteristics and CHF prediction in nanofluid boiling. Int J Heat Mass Transf 80:256–265

    Article  Google Scholar 

  13. Wen D (2008) Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF). Int J Heat Mass Transf 51:4958–4965

    Article  MATH  Google Scholar 

  14. Hegde RN, Rao SS, Reddy R (2012) Boiling induced nanoparticle coating and its effect on pool boiling heat transfer on a vertical cylindrical surface using CuO nanofluids. Heat Mass Transf 48:1549–1557

    Article  Google Scholar 

  15. Huitink D, Ontiveros EED, Hassan Y (2012) The bubble fossil record: insight into boiling nucleation using nanofluid pool-boiling. Heat Mass Transf 48:267–274

    Article  Google Scholar 

  16. Kim S, Bang I, Buongiorno J, Hu L (2007) Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf 50:4105–4116

    Article  Google Scholar 

  17. Xue HS, Fan JR, Hu YC, Hong RH (2012) Particulate fouling during the pool boiling heat transfer of MWCNT nanofluid. Heat Mass Transf 48:875–879

    Article  Google Scholar 

  18. Hegde R, Rao S, Reddy RP (2012) Experimental studies on CHF enhancement in pool boiling with CuO-water nanofluid. Heat Mass Transf 48:1031–1041. doi:10.1007/s00231-011-0955-9

    Article  Google Scholar 

  19. Vafaei S (2015) Nanofluid pool boiling heat transfer phenomenon. Powder Technol 277:181–192

    Article  Google Scholar 

  20. Vafaei S, Borca-Tasciuc T (2014) Role of nanoparticles on nanofluid boiling phenomenon: nanoparticle deposition. Chem Eng Res Des 92:842–856

    Article  Google Scholar 

  21. Ulcay MS (2014) CHF enhancement of Al2O3, TiO2 and Ag nanofluids and effect of nucleate pool boiling time. In: 2014 IEEE intersociety conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp 756–764

  22. Golubovic MN, Hettiarachchi HM, Worek W, Minkowycz W (2009) Nanofluids and critical heat flux, experimental and analytical study. Appl Therm Eng 29:1281–1288

    Article  Google Scholar 

  23. Lee S-W, Park S-D, Kang S-R, Kim S-M, Seo H, Lee D-W, Bang I-C (2012) Critical heat flux enhancement in flow boiling of Al2O3 and SiC nanofluids under low pressure and low flow conditions. Nucl Eng Technol 44:429–436

    Article  Google Scholar 

  24. Pham Q, Kim T, Lee S, Chang S (2012) Enhancement of critical heat flux using nano-fluids for Invessel Retention–External Vessel Cooling. Appl Therm Eng 35:157–165

    Article  Google Scholar 

  25. Park K-J, Jung D, Shim SE (2009) Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes. Int J Multiph Flow 35:525–532

    Article  Google Scholar 

  26. Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7:141–150

    Article  Google Scholar 

  27. Sarafraz M, Hormozi F (2015) Pool boiling heat transfer to dilute copper oxide aqueous nanofluids. Int J Therm Sci 90:224–237

    Article  Google Scholar 

  28. Tran QH, Nguyen V, Le A-T (2013) Silver nanoparticles: synthesis, properties, toxicology, application and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:033001

    Article  Google Scholar 

  29. Noroozi M, Radiman S, Zakaria A, Soltaninejad S (2014) Fabrication, characterization, and thermal property evaluation of silver nanofluids. Nanoscale Res Lett 9:1–10

    Article  Google Scholar 

  30. Kim H (2011) Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review. Nanoscale Res Lett 6:1–18

    Google Scholar 

  31. Kostic M, Simham KC (2009) Computerized, transient hot-wire thermal conductivity (HWTC) apparatus for nanofluids. In: Proceedings of the 6th WSEAS international conference on heat and mass transfer (HMT’09) Citeseer, pp 71–78

  32. Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31:593–599. doi:10.1016/j.expthermflusci.2006.06.009

    Article  Google Scholar 

  33. Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17:4019

    Article  Google Scholar 

  34. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  Google Scholar 

  35. Peng S, McMahon JM, Schatz GC, Gray SK, Sun Y (2010) Reversing the size-dependence of surface plasmon resonances. Proc Natl Acad Sci 107:14530–14534

    Article  Google Scholar 

  36. Yeshchenko O, Dmitruk I, Alexeenko A, Kotko A, Verdal J, Pinchuk A (2012) Size and temperature dependence of the surface plasmon resonance in silver nanoparticles. In: International School and conference on photonics, p 89

  37. Gerardi C, Buongiorno J, L-w Hu, McKrell T (2011) Infrared thermometry study of nanofluid pool boiling phenomena. Nanoscale Res Lett 6:1–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Emami-Meibodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareshahi, H., Emami-Meibodi, M. & Behjat, A. Cautions required for the boiling test of a silver–water nanofluid. Heat Mass Transfer 52, 2895–2900 (2016). https://doi.org/10.1007/s00231-016-1796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1796-3

Keywords

Navigation