Skip to main content
Log in

Experimental study of laminar forced convective heat transfer of deionized water based copper (I) oxide nanofluids in a tube with constant wall heat flux

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Nanofluids, having 1–100 nm size particles in any base fluid are promising fluid for heat transfer intensification due to their enhanced thermal conductivity as compared with the base fluid. The forced convection of nanofluids is the major practical application in heat transfer equipments. In this study, heat transfer enhancements at constant wall heat flux under laminar flow conditions were investigated. Nanofluids of different volume fractions (1, 2 and 4 %) of copper (I) oxide nanoparticles in deionized water were prepared using two step technique under mechanical mixing and ultrasonication. The results were investigated by increasing the Reynolds number of the nanofluids at constant heat flux. The trends of Nusselt number variation with dimensionless length (X/D) and Reynolds numbers were studied. It was observed that heat transfer coefficient increases with increases particles volume concentration and Reynolds number. The maximum enhancement in heat transfer coefficient of 61 % was observed with 4 % particle volume concentration at Reynolds number (Re ~ 605).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Cp :

Specific heat capacity [kJ/(kg K)]

D:

Diameter (of test section pipe) (m)

f :

Friction factor of (nano)fluid in test section

h:

Average heat transfer coefficient in test section [W/(m2 K)]

hx :

Local heat transfer coefficient [W/(m2 K)]

k:

Thermal conductivity [W/(m K)]

L:

Length of heated test section (m)

lj :

Length of particular section j of test section (m)

Q:

Mass flow rate through test rig (kg/s)

Nu:

Average Nusselt number in test section

Nux :

Local Nusselt number

Gz:

Graetz number

f:

Fluid

w:

Wall

A:

Area (m2)

p:

Pressure (Pa)

P:

Electric power (W)

Pr:

Prandtl number of fluid in test section

q″:

Heat flux density from test section pipe to water (W/m2)

Q′:

Heat flux from test section pipe to water (W)

Re:

Reynolds number

T:

Temperature (°C)

Tin :

Fluid temperature at inlet to test section (°C)

Tout :

Fluid temperature at outlet of test section (°C)

u:

Fluid velocity in test section (m/s)

Q:

Volume flow rate (m3/s)

X:

Distance from start of heating in test section to place j∗ (Dimensionless)

Δ:

Difference

μ :

Dynamic viscosity [kg/(m s)]

ρ:

Density (kg/m3)

Φ :

Volume fraction (%)

NPs:

Nanoparticles

HTC:

Heat transfer coefficient

TC:

Thermocouple

MWCNT:

Multi-wall carbon nanotube

DWCNT:

Double wall carbon nanotube

p:

Particle

nf:

Nanofluids

bf:

Base fluids

References

  1. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-newtonian flows, FED-V.231/MD-V.66. ASME, New York, pp 99–105

    Google Scholar 

  2. Choi SUS, Zhang ZG, Keblinski P (2004) Nanofluids. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 6. American Scientific, Los Angeles, Calif, USA, pp 757–737

  3. Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Thermal transport in nanofluids. Ann Rev Mat Res 34:219–246

    Article  MATH  Google Scholar 

  4. Özerinç S, Kakaç S, Yazıcıoğlu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8(2):145–170

    Article  Google Scholar 

  5. Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250

    Article  Google Scholar 

  6. Zhu HT, Zhang CY, Tang YM, Wang JX (2007) Novel synthesis and thermal conductivity of CuO nanofluid. J Phys Chem 111(4):1646–1650

    Google Scholar 

  7. Hong T, Yang H, Choi CJ (2005) Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 97(6):064311–064314

    Article  Google Scholar 

  8. Beck M, Yuan Y, Warrier P, Teja A (2009) The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res 11(5):1129–1136

    Article  Google Scholar 

  9. Wang X, Choi SUS, Xu X (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13(4):474–480

    Article  Google Scholar 

  10. Czarnetzki W, Roetzel W (1995) Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity. Int J Thermophys 16(2):413–422

    Article  Google Scholar 

  11. Ju YS, Kim J, Hung M (2008) Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J Heat Transf 130(9):092403–092406

    Article  Google Scholar 

  12. Putnam SA, Cahill DG, Braun PV, Ge Z, Shimmin RG (2006) Thermal conductivity of nanoparticle suspensions. J Appl Phys 99(8):084308

    Article  Google Scholar 

  13. Paul G, Chopkar M, Manna I, Das PK (2010) Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sustain Energy Rev 14:1913–1924

    Article  Google Scholar 

  14. Lee S, Choi SUS (1996) Application of metallic nanoparticle suspensions in advanced cooling systems. In: International mechanical engineering congress and exhibition, Atlanta, USA

  15. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Article  Google Scholar 

  16. Wen D, Ding Y (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf 47(24):5181

    Article  Google Scholar 

  17. Heris SZ, Esfahany MN, Etemad SGH (2007) Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. J Heat Fluid Flow 8:203–210. doi:10.1016/j.ijheatfluidflow.2006.05.001

    Article  Google Scholar 

  18. Zhou DW (2004) Heat transfer enhancement of copper nanofluid with acoustic cavitation. Int J Heat Mass Transf 47:3109–3117

    Article  Google Scholar 

  19. Chien HT, Tsai CI, Chen PH, Chen PY (2003) Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid. In: IEEE, Shanghai, China, p 389

  20. Tsai CY, Chien HT, Ding PP, Chan B, Luh TY, Chen PH (2004) Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater Lett 58:1461–1465

    Article  Google Scholar 

  21. Ding Y, Alias H, Wen D, Williams RA (2005) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1–2):240–250

    Google Scholar 

  22. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2):151–170

    Article  Google Scholar 

  23. Yang Y, Zhang ZG, Grulke EA, Anderson WB, Wu G (2005) Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int J Heat Mass Transf 48(6):1107–1116

    Article  Google Scholar 

  24. Putra N, Roetzel W, Das SK (2003) Natural convection of nano-fluids. Heat Mass Transf 39(8–9):775–784

    Article  MATH  Google Scholar 

  25. Wen D, Ding Y (2006) Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow 26(6):855–864

    Article  Google Scholar 

  26. Hefei Quantum Quelle Nano Science and Technology Co., LTD, China. www.quantum-nano.com/en/

  27. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117

    Article  MathSciNet  Google Scholar 

  28. Buongiorno J, Venerus DC, Prabhat N (2009) A benchmark study on the thermal conductivity of nanofluids. J. Appl Phys 106:094312

    Article  Google Scholar 

  29. Incropera FP, DeWitt DP (1996) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  30. Shah RK, London AL (1978) Supplement 1 to Advances in heat transfer. Academic Press, New York

    Google Scholar 

  31. Shah RK, Bhatti MS (1987) Handbook of single-phase convective heat transfer (chapter 3). Wiley, New York

    Google Scholar 

  32. Chen WK (1993) Linear networks and systems (book style). Wadsworth, Belmont, pp 123–135

    Google Scholar 

  33. Taylor JR (1997) An introduction to error analysis. University Science Books, Sausalito

    Google Scholar 

  34. Murshed S, Leong K, Yang C (2008) Thermophysical and electro kinetic properties of nanofluids—a critical review. Appl Therm Eng 28(17–18):2109–2125

    Article  Google Scholar 

  35. Bejan A (2004) Convection heat transfer. Wiley, New Jersey

    MATH  Google Scholar 

  36. Estellé P, Halelfadl S, Maré T (2015) Thermal conductivity of CNT water based nanofluids: experimental trends and models overview. J Therm Eng 1(2):381–390

    Article  Google Scholar 

  37. Ting H-H, Hou S-S (2015) Investigation of laminar convective heat transfer Al2O3-water nanofluids flowing through a squarcross-section duct with a constant heat flux. Materials 8:5321–5335

    Article  Google Scholar 

  38. Yang C, Li W, Nakayama A (2013) Convective heat transfer of nanofluids in a concentric annulus. Int J Therm Sci 71:249–257

    Article  Google Scholar 

Download references

Acknowledgments

The authors express immense thanks to Department of Chemical Engineering, University of Engineering and Technology, Lahore, Pakistan, for providing test facility and analysis instruments. We are also thankful to Mr. Muhammad Shabbir, Institute of Environmental Engineering and Research, UET, Lahore for providing deionized water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Umer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umer, A., Naveed, S. & Ramzan, N. Experimental study of laminar forced convective heat transfer of deionized water based copper (I) oxide nanofluids in a tube with constant wall heat flux. Heat Mass Transfer 52, 2015–2025 (2016). https://doi.org/10.1007/s00231-015-1713-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1713-1

Keywords

Navigation