Skip to main content
Log in

Buoyancy-aided convection flow in a heated straight pipe: comparing different asymptotic models

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A vertical straight circular adiabatic vertical long tube, open at its lower and upper ends, is heated at its base on a short portion. The flow is studied with the hypothesis of no pressure drop between the entrance and the exit. Direct resolution of Navier Stokes equations is done by finite volumes. The numerical solutions are then compared to a one dimensional model and to two asymptotic models. The first asymptotic model is inspired from boundary layer approximations whereas the second one is more a linear perturbation of the Navier Stokes Boussinesq equations. For moderate values of the Grashof number, pressure, starting from zero decreases over the heated part to a minimum and increases on the adiabatic tube to zero. For larger values of Grashof, a local maximum in pressure appears, this pressure hump may even be positive. The four model agree, for moderate Grashof. When increasing the Grashof, only the two asymptotic models recover the behavior obtained from the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Gr :

Grashof (equivalent to Re due to the choice of scales)

g :

Gravitational acceleration

h :

Heat transfer coefficient

k :

Thermal conductivity

\(\ell\) :

Length of the heated part

\(L_c\) :

Length of the adiabatic channel

\({\bar{p}}\) :

Deviation of pressure from hydrostatic pressure without dimension

Pe :

Péclet number

r :

Radial variable

R :

Radius of the channel

Re :

Reynolds number

S :

Section of the channel

\({\bar{T}}_m\) :

Mean value of the temperature across a section ponderated by the Poiseuille solution

\(T_0\) :

Reference temperature

\(T_w\) :

Temperature of the heated part of the channel

u :

Velocity along the tube

\({\bar{U}}_{max}\) :

Maximum of the velocity without dimension

\(\bar{U}\) :

Mean value of the velocity across a section

\(U_0= (R^2\rho g \alpha (T_w-T_0))/\mu\) :

Velocity scale

v :

Radial velocity across the tube

x :

Axial direction along the tube

\(\alpha\) :

Coefficient of thermal expansion

\(\Delta T=(T_x-T_0)\) :

Driving difference of temperature

\(\lambda\) :

A thermal length for the 1D model

\(\mu\) :

Dynamic viscosity

\(\nu\) :

Kinematic viscosity

\(\rho _0\) :

Reference density of the fluid

\(-\,\hat{}\,\sim\) :

Quantity without dimension

References

  1. Pastohr H, Kornadt O, Gurlebeck K (2004) Numerical and analytical calculations of the temperature and flow field in the upwind power plant. Int J Energy Res 28:495–510

    Article  Google Scholar 

  2. Sangi Roozbeh, Amidpour Majid, Hosseinizadeh Behzad (2011) Modeling and numerical simulation of solar chimney power plants. Sol Energy 85:829–838

    Article  Google Scholar 

  3. Koonsrisuk A, Lorente S, Bejan A (2010) Constructal solar chimney configuration. Int J Heat Mass Transf 53:327–333

    Article  MATH  Google Scholar 

  4. Koonsrisuk A (2012) Mathematical modeling of sloped solar chimney power plants. Energy 46:582–589

    Article  Google Scholar 

  5. Tingzhen M, Wei L, Guoliang X (2006) Analytical and numerical investigation of the solar chimney power plant systems. Int J Energy Res 30:861–873

    Article  Google Scholar 

  6. Chitsomboon T (2001) A validated analytical model for flow in solar chimney. Int J Renew Energy Eng 3(2):339–346

    Google Scholar 

  7. Padki M, Sherif SA (1999) on a simple analytical model for solar chimneys. Int J Energy Res 23:345–349

    Article  Google Scholar 

  8. Leontiev A (1985) Théorie des échanges de chaleur et de masse. ed. MIR

  9. Prandtl L (1952) Guide à travers la mécanique des fluides. Dunod

  10. Lévêque A (1928) Les lois de la transmission de chaleur par convection. Ann. des Mines. XIII S. 201–299, 305–362 381–415

  11. Lagrée P-Y (1999) Thermal mixed convection induced locally by a step in surface temperature in a Poiseuille Flow in the framework of Triple Deck. Int J Heat Mass Transf 42:2509–2524

    Article  MATH  Google Scholar 

  12. Lagrée P-Y (2001) Removing the marching breakdown of the boundary layer equations for mixed convection above a horizontal plate. Int J Heat Mass Transf 44(17):3359–3372

    Article  MATH  Google Scholar 

  13. Le Quéré P (2008) On the computation of some external or partially enclosed natural convection flows. In: Proceedings of the 19th international symposium on transport phenomena, 17–20 Aug 2008, Reykjavik, I

  14. Desrayaud G, Chénier E, Joulin A, Bastide A, Brangeon B, Caltagirone JP, Cherif Y, Eymard R, Garnier C, Giroux-Julien S, Harnane Y, Joubert P, Laaroussi N, Lassue S, Le Quéré P, Li R, Saury D, Sergent A, Xin S, Zoubir A (2013) Benchmark solutions for natural convection flows in vertical channels submitted to different open boundary conditions. Int J Therm Sci 72:18–33

    Article  Google Scholar 

  15. Garnier C, Sergent A, Le Quéré, Private communication

  16. Gerris Flow Solver. http://gfs.sourceforge.net/wiki/index.php/Main_Page

  17. Popinet S (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys 190(2):572–600

    Article  MathSciNet  MATH  Google Scholar 

  18. Lagrée P-Y, Staron L, Popinet S (2011) The granular column collapse as a continuum: validity of a Navier-Stokes model with a μ(I)-rheology. J Fluid Mech. doi:10.1017/jfm.2011.335

    MathSciNet  MATH  Google Scholar 

  19. Pedley TJ (1980) The fluid mechanics of large blood vessels. Cambridge University Press, Cambridge 633p

    Book  MATH  Google Scholar 

  20. Chouly Franz, Lagrée P-Y (2012) Comparison of computations of asymptotic flow models in a constricted channel. Appl Math Model 36:6061–6071

    Article  MathSciNet  Google Scholar 

  21. Lagrée P-Y, Lorthois S (2005) The RNS/Prandtl equations and their link with other asymptotic descriptions: application to the computation of the maximum value of the Wall Shear Stress in a pipe. Int J Eng Sci 43(3–4):352–378

    Article  MATH  Google Scholar 

  22. Lagrée P-Y, Berger E, Deverge M, Vilain C, Hirschberg A (2005) Characterization of the pressure drop in a 2D symmetrical pipe: some asymptotical, numerical and experimental comparisons. ZAMM Z Angew Math Mech 85(2):141–146

    Article  MATH  Google Scholar 

  23. Aung W, Fletcher L, Sernas V (1972) Developing laminar free convection between vertical flat plates asymmetric heating. Int J Heat Mass Transf 15:2293–2307

    Article  MATH  Google Scholar 

  24. Lagrée P-Y (2010) Interactive Boundary Layers. In: Steinrück H (ed) Asymptotic methods in fluid mechanics: survey and recent advances, CISM courses and lectures, vol 523. Springer, Wien New York, pp 247–286. ISBN 978-3-7091-0407-1

  25. Elenbaas W (1942) Heat dissipation of parallel plates by free convection. Physica 9(1):1–28

    Article  MATH  Google Scholar 

  26. Garnier C, Sergent A, Le Quéré P (2013) Modélisation et influence des conditions limites pour des écoulements 2d semi-confinés. XIème Colloque Interuniversitaire Franco-Québécois sur la Thermique des Systèmes 3–5 juin 2013, Reims

  27. http://www.freefem.org/ff++/

  28. Sun H, Li R, Chénier E, Lauriat G (2012) On the modeling of aiding mixed convection in vertical channels. Heat Mass Transfer 48(7):1125–1134. doi:10.1007/s00231-011-0964-8

    Article  Google Scholar 

  29. Desrayaud G, Bennacer R, Caltagirone JP, Chenier E, Joulin A, Laaroussil N, Motjtabi K (2007) Etude numérique comparative des écoulements thermoconvectifs dans un canal vertical chauffé asymmétriquement. In: 8 ème Colloque Inter-Universitaire Franco-Québécois sur la Thermique des Systèmes, CIFQ2007/ART-06-14, 28–30 (Mai 2007)

  30. Garnier C, Sergent A, Fraigneau Y, Le Quéré P (2014) Comparative study of numerical simulations of a 2d buoyancy-driven flow in a vertical channel asymmetrically heated with or without external domain. In: Proceedings of the 15th international heat transfer conference. Kyoto, Japan IHTC15-9291

  31. Garnier C, Sergent A, Fraigneau Y, Le Quéré P. Etude numérique de l’interaction entre un canal vertical asymétriquement chauffé et son environnement extérieur.

  32. Garnier C (2014) Modélisation numérique des écoulements ouverts de convection naturelle au sein d’un canal vertical asymétriquement chauffé. PhD Thesis University Paris-Sud Orsay

  33. Cebeci T, Cousteix J (2005) Modeling and computation of boundary-layer flows, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to thank ENSTA Paristech (aka. Techniques Avancées) to provide links between them trough a series of courses of heat transfer at ENIT Tunis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Yves Lagrée.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfaoui, W., Safi, M.J. & Lagrée, PY. Buoyancy-aided convection flow in a heated straight pipe: comparing different asymptotic models. Heat Mass Transfer 52, 1515–1527 (2016). https://doi.org/10.1007/s00231-015-1677-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1677-1

Keywords

Navigation