Skip to main content
Log in

Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gad-el-Hak M (1999) The fluid mechanics of microdevices—the Freeman scholar lecture. J Fluids Eng 121(1):5–33

    Article  Google Scholar 

  2. You S, Simon TW, Bar-Cohen A (1992) A technique for enhancing boiling heat transfer with application to cooling of electronic equipment. IEEE Trans Compon Hybrids Manuf Technol 15(5):823–831

    Article  Google Scholar 

  3. Lin C, Kim Y, Niedrach L, Ramp K (1996) Electrochemical corrosion potential models for boiling-water reactor applications. Corrosion 52(8):618–625

    Article  Google Scholar 

  4. Kandlikar SG (2002) Fundamental issues related to flow boiling in minichannels and microchannels. Exp Therm Fluid Sci 26(2):389–407

    Article  Google Scholar 

  5. Mao Y, Zhang Y (2014) Molecular dynamics simulation on rapid boiling of water on a hot copper plate. Appl Therm Eng 62(2):607–612

    Article  MathSciNet  Google Scholar 

  6. Faghri A, Zhang Y (2006) Transport phenomena in multiphase systems. Academic Press, Burlington

    Google Scholar 

  7. Xu X (2002) Phase explosion and its time lag in nanosecond laser ablation. Appl Surf Sci 197:61–66

    Article  Google Scholar 

  8. Novak BR, Maginn EJ, McCready MJ (2008) An atomistic simulation study of the role of asperities and indentations on heterogeneous bubble nucleation. J Heat Transf 130(4):042411

    Article  Google Scholar 

  9. Takamizawa A, Kajimoto S, Hobley J, Hatanaka K, Ohta K, Fukumura H (2003) Explosive boiling of water after pulsed IR laser heating. Phys Chem Chem Phys 5(5):888–895

    Article  Google Scholar 

  10. Kudryashov SI, Allen SD (2006) Submicrosecond dynamics of water explosive boiling and lift-off from laser-heated silicon surfaces. J Appl Phys 100(10):104908

    Article  Google Scholar 

  11. Seyf HR, Zhang Y (2013) (a). Effect of nanotextured array of conical features on explosive boiling over a flat substrate: a nonequilibrium molecular dynamics study. Int J Heat Mass Transf 66:613–624

    Article  Google Scholar 

  12. Matsumoto SMTKS, Kimura YYT (1998) Liquid droplet in contact with a solid surface. Microscale Thermophys Eng 2(1):49–62

    Article  MathSciNet  Google Scholar 

  13. Yi P, Poulikakos D, Walther J, Yadigaroglu G (2002) Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. Int J Heat Mass Transf 45(10):2087–2100

    Article  MATH  Google Scholar 

  14. Maroo SC, Chung J (2008) Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics. J Colloid Interface Sci 328(1):134–146

    Article  Google Scholar 

  15. Seyf HR, Zhang Y (2013) Molecular dynamics simulation of normal and explosive boiling on nanostructured surface. J Heat Transf 135(12):121503

    Article  Google Scholar 

  16. Maruyama S, Kimura T, Yamaguchi Y (1997) A molecular dynamics simulation of a bubble nucleation on solid surface. Natl Heat Transf Symp Jpn 34:675–676

    Google Scholar 

  17. Nagayama G, Tsuruta T, Cheng P (2006) Molecular dynamics simulation on bubble formation in a nanochannel. Int J Heat Mass Transf 49(23):4437–4443

    Article  MATH  Google Scholar 

  18. Gu X, Urbassek H (2005) Atomic dynamics of explosive boiling of liquid-argon films. Appl Phys B 81(5):675–679

    Article  Google Scholar 

  19. Wu Y, Pan C (2006) Molecular dynamics simulation of thin film evaporation of Lennard-Jones liquid. Nanoscale Microscale Thermophys Eng 10(2):157–170

    Article  MathSciNet  Google Scholar 

  20. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  Google Scholar 

  21. Hockney RW, Eastwood JW (1988) Computer simulation using particles. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  22. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  Google Scholar 

  23. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  MATH  Google Scholar 

  24. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  Google Scholar 

  25. Hünenberger PH (2005) Thermostat algorithms for molecular dynamics simulations. Advanced computer simulation. Springer, New York, pp 105–149

    Google Scholar 

  26. Hetsroni G, Mosyak A, Pogrebnyak E, Segal Z (2005) Explosive boiling of water in parallel micro-channels. Int J Multiph Flow 31(4):371–392

    Article  MATH  Google Scholar 

  27. Iida Y, Okuyama K, Sakurai K (1994) Boiling nucleation on a very small film heater subjected to extremely rapid heating. Int J Heat Mass Transf 37(17):2771–2780

    Article  Google Scholar 

  28. Chen L, Zuankai W, Pei- IW, Yoav P, Nikhil K, Peterson GP (2008) Nanostructured copper interfaces for enhanced boiling. Small 4(8):1084–1088

    Article  Google Scholar 

  29. Yu J, Wang H (2012) A molecular dynamics investigation on evaporation of thin liquid films. Int J Heat Mass Transf 55(4):1218–1225

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The research was financially supported under the grant of the National Nature Science Foundation of China under Grant Number 51275180, the National Nature Science Foundation of China under Grant Number 51475172 and the US National Science Foundation under Grant Number CBET-1066917. The authors also would like to acknowledge the Join-training PhD Program (No. 201306150079) sponsored by the China Scholarship Council and hosted by the University of Missouri.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Mao, Y., Tang, Y. et al. Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study. Heat Mass Transfer 52, 1469–1478 (2016). https://doi.org/10.1007/s00231-015-1668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1668-2

Keywords

Navigation