Skip to main content

Advertisement

Log in

Performance evaluation of a shell and tube heat exchanger operated with oxide based nanofluids

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This study is about the performance evaluation of a shell and tube heat exchanger operated with nanofluid. Thermal conductivity, viscosity, and density of the nanofluids were increased, but the specific heat of the nanofluids was decreased with increasing the concentrations of the particles. The convective heat transfer coefficient was found to be 2–15 % higher than that of water at 50 kg/min of both side fluid. Nevertheless, energy effectiveness has improved about 23–52 % for the above-mentioned nanofluids. As, energy effectiveness (ɛ) is strongly depends on the density and specific heat of the operating fluids therefore, maximum ɛ has obtained for ZnO–W nanofluid and lowest found for SiO2–W nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Area (m2)

A cf :

Cross flow area (m2)

C :

Heat capacity rate

C p :

Specific heat capacity (J/kg K)

C r :

Heat capacity ratio

D :

Dia of shell (m)

D :

Dia of tube (m)

K :

Thermal conductivity (W/m K)

L :

Length (m)

\(\dot{m}_{f}\) :

Mass flow rate of base fluid (kg/s)

\(\dot{m}_{nf}\) :

Mass flow rate of nano fluid (kg/s)

N :

Number of tubes

NTU :

Number of heat transfer units

Nu :

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

U o :

Overall heat transfer coefficient (W/m2 K)

W:

Water

µ :

Viscosity (Ns/m2)

Ø :

Volume fraction

ɛ :

Energy effectiveness

ρ :

Density (kg/m3)

n f :

Nanofluid

f :

Base fluid

n p :

Nanoparticle

h :

Hot side

c :

Cold side

fs :

Shell side fluid

f T :

Tube side fluid

w :

Wall

min:

Minimum

max:

Maximum

References

  1. Choi S (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments applications of non-newtonian flows, FED-vol 231/MD-vol 66. ASME, New York, pp 99–105

    Google Scholar 

  2. LotfizadehDehkordi B et al (2013) Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf 49(8):1109–1115

    Article  Google Scholar 

  3. Mahbubul IM, Saidur R, Amalina MA (2012) Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf 55(4):874–885

    Article  Google Scholar 

  4. Sundar LS et al (2013) Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int Commun Heat Mass Transf 41:41–46

    Article  Google Scholar 

  5. Rizvi I et al (2013) Mathematical modelling of thermal conductivity for nanofluid considering interfacial nano-layer. Heat Mass Transf 49(4):595–600

    Article  Google Scholar 

  6. Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8(6):36–44

    Article  Google Scholar 

  7. Mahbubul IM, Saidur R, Amalina MA (2013) Thermal conductivity, viscosity and density of R141b refrigerant based nanofluid. Proced Eng 56:310–315. doi:10.1016/j.proeng.2013.03.124

    Article  Google Scholar 

  8. Vasheghani M et al (2011) Effect of Al2O3 phases on the enhancement of thermal conductivity and viscosity of nanofluids in engine oil. Heat Mass Transf 47(11):1401–1405

    Article  Google Scholar 

  9. Pandey SD, Nema VK (2012) Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Exp Thermal Fluid Sci 38:248–256

    Article  Google Scholar 

  10. Zhou S-Q, Ni R (2008) Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Appl Phys Lett 92(9):093123

    Article  Google Scholar 

  11. Shahrul IM et al (2014) Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates. Numer Heat Transf Part A Appl 65(7):699–713

    Article  Google Scholar 

  12. Namburu PK et al (2009) Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. Int J Therm Sci 48(2):290–302

    Article  Google Scholar 

  13. Vakili M, Mohebbi A, Hashemipour H (2013) Experimental study on convective heat transfer of TiO2 nanofluids. Heat Mass Transf 49(8):1159–1165

    Article  Google Scholar 

  14. Heris SZ, Esfahany MN, Etemad SG (2007) Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow 28(2):203–210

    Article  Google Scholar 

  15. Hajmohammadi MR et al (2015) Effects of Cu and Ag nano-particles on flow and heat transfer from permeable surfaces. Adv Powder Technol 26:193–199

    Article  Google Scholar 

  16. Hajmohammadi MR et al (2013) A new configuration of bend tubes for compound optimization of heat and fluid flow. Energy 62:418–424

    Article  Google Scholar 

  17. Hajmohammadi M, Nourazar SS, Campo A (2014) Analytical solution for two-phase flow between two rotating cylinders filled with power law liquid and a micro layer of gas. J Mech Sci Technol 28(5):1849–1854

    Article  Google Scholar 

  18. Hajmohammadi MR, Nourazar SS (2014) On the insertion of a thin gas layer in micro cylindrical Couette flows involving power-law liquids. Int J Heat Mass Transf 75:97–108

    Article  Google Scholar 

  19. Hojjat M et al (2011) Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature. Heat Mass Transf 47(2):203–209

    Article  Google Scholar 

  20. Suresh S, Chandrasekar M, Selvakumar P (2012) Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube. Heat Mass Transf 48(4):683–694

    Article  Google Scholar 

  21. Elias MM et al (2014) Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int J Heat Mass Transf 70:289–297

    Article  Google Scholar 

  22. Farajollahi B, Etemad SG, Hojjat M (2010) Heat transfer of nanofluids in a shell and tube heat exchanger. Int J Heat Mass Transf 53(1–3):12–17

    Article  MATH  Google Scholar 

  23. Lotfi R, Rashidi AM, Amrollahi A (2012) Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger. Int Commun Heat Mass Transf 39(1):108–111

    Article  Google Scholar 

  24. BHD., S.E.S. HIS Shell & Tube Heat Exchanger (Model: HE 668). 2011 17/06/2011; 17/06/2011. http://www.solution.com.my/pdf/HE668(A4).pdf

  25. Hajmohammadi MR, Nourazar SS (2014) On the solution of characteristic value problems arising in linear stability analysis; semi analytical approach. Appl Math Comput 239:126–132

    MathSciNet  MATH  Google Scholar 

  26. Sarkar J (2011) A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev 15(6):3271–3277

    Article  Google Scholar 

  27. Gafiychuk VV et al (2011) ZnO nanoparticles produced by reactive laser ablation. Appl Surf Sci 257(20):8396–8401

    Article  Google Scholar 

  28. Sundar LS et al (2012) Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: an experimental study. Int J Heat Mass Transf 55(11–12):2761–2768

    Article  Google Scholar 

  29. Kamyar A, Saidur R, Hasanuzzaman M (2012) Application of computational fluid dynamics (CFD) for nanofluids. Int J Heat Mass Transf 55(15–16):4104–4115

    Article  Google Scholar 

  30. Vajjha RS, Das DK (2009) Specific heat measurement of three nanofluids and development of new correlations. ASME J Heat Transf 131(7):071601

    Article  Google Scholar 

  31. Incropera FP et al (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, New Jersey

    Google Scholar 

  32. Leong KY et al (2012) Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants. Int J Heat Mass Transf 55(4):808–816

    Article  MathSciNet  Google Scholar 

  33. Kakac S, Pramuanjaroenkij A, Liu H (2012) Heat exchangers: selection, rating, and thermal design, 3rd edn. CRC Press, FL

    MATH  Google Scholar 

  34. Shah RK, Sekulic DP (2003) Fundamentals of heat exchanger design. Wiley, New Jersey

    Book  Google Scholar 

  35. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43(19):3701–3707

    Article  MATH  Google Scholar 

  36. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11(2):151–170

    Article  Google Scholar 

  37. Brinkman H (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571

    Article  Google Scholar 

  38. Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8(2):245–254

    Article  Google Scholar 

  39. Einstein A, Fürth R (1956) Investigations on the theory of Brownian movement. Dover Publications, New York

    Google Scholar 

  40. Teng T-P et al (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30(14–15):2213–2218

    Article  Google Scholar 

  41. Ghozatloo A, Rashidi A, Shariaty-Niassar M (2014) Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger. Exp Thermal Fluid Sci 53:136–141

    Article  Google Scholar 

  42. Nasiri M, Etemad SG, Bagheri R (2011) Experimental heat transfer of nanofluid through an annular duct. Int Commun Heat Mass Transf 38(7):958–963

    Article  Google Scholar 

  43. Elias MM et al (2013) Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. Int Commun Heat Mass Transf 44:93–99

    Article  Google Scholar 

  44. Leong KY et al (2012) Heat transfer and entropy analysis of three different types of heat exchangers operated with nanofluids. Int Commun Heat Mass Transf 39(6):838–843

    Article  MathSciNet  Google Scholar 

  45. Shahrul IM et al (2014) Global effects of MWCNT-W nanofluid in a shell & tube heat exchanger. Adv Mater Res 832:154–159

    Article  Google Scholar 

  46. Shahrul IM et al (2014) Energy and environmental effects of shell and tube heat exchanger by using nanofluid as a coolant. J Chem Eng Jpn 47(4):340–344

    Article  Google Scholar 

  47. Hajmohammadi MR et al (2013) New methods to cope with temperature elevations in heated segments of flat plates cooled by boundary layer flow. Therm Sci 00:159

    Google Scholar 

  48. Bejan A, Sciubba E (1992) The optimal spacing of parallel plates cooled by forced convection. Int J Heat Mass Transf 35(12):3259–3264

    Article  Google Scholar 

  49. Hajmohammadi MR et al (2013) Improvement of forced convection cooling due to the attachment of heat sources to a conducting thick plate. J Heat Transf 135(12):124504

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ministry of Education Malaysia (MoE) Malaysia for financial support. This work was supported by UM-MoE High Impact Research Grant Scheme (HIRG) (Project No: UM.C/HIR/MOHE/ENG/40 (D000040-16001)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Saidur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrul, I.M., Mahbubul, I.M., Saidur, R. et al. Performance evaluation of a shell and tube heat exchanger operated with oxide based nanofluids. Heat Mass Transfer 52, 1425–1433 (2016). https://doi.org/10.1007/s00231-015-1664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1664-6

Keywords

Navigation