Skip to main content
Log in

Dual solutions for stagnation-point flow and convective heat transfer of a Williamson nanofluid past a stretching/shrinking sheet

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, the problem of boundary layer stagnation-point flow and heat transfer of a Williamson nanofluid on a linear stretching/shrinking sheet with convective boundary condition is studied. The effects of Brownian motion and thermophoresis are considered in the energy equation. The governing partial differential equations are first transformed into set of ordinary differential equations, which are then solved numerically using Runge–Kutta–Felhberg fourth–fifth order method with Shooting technique. The characteristics of the flow and heat transfer as well as skin friction and Nusselt number for various prevailing parameters are presented graphically and discussed in detail. A comparison with the earlier reported results has been done and an excellent agreement is shown. It is found that dual solutions exist for the shrinking sheet case. Further, it is observed that the thermal boundary layer thickness increases with increase in Williamson parameter for both solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A 1 :

First Rivlin–Erickson tensor

a, b, c :

Constants

Bi :

Biot number

C :

Nanoparticle volume fraction (kg/m3)

C f :

Skin friction co-efficient

(C p ) f :

Specific heat coefficient of fluid (J/kg K)

(C p ) p :

Specific heat coefficient of nanoparticles (J/kg K)

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

f :

Dimensionless velocity component

h f :

Heat transfer coefficient

I :

Identity vector

j w :

Nanoparticles mass flux

k :

Thermal conductivity (W/mK)

Le :

Lewis number

Nb :

Brownian motion parameter

Nt :

Thermophoresis parameter

Nu x :

Local Nusselt number

p :

Pressure

Pr :

Prandtl number

q w :

Heat flux

O :

Origin

Re x :

Local Reynolds number

S :

Cauchy stress tensor

Sh :

Sherwood number

T :

Fluid temperature (K)

t :

Time (s)

T f :

Surface temperature (K)

\(\vec{V}\) :

Velocity of the fluid (m/s)

u, v :

Velocity components along x and y directions (m/s)

u e :

External flow velocity

x :

Coordinate along the plate (m)

y :

Coordinate normal to the plate (m)

ν :

Kinematic viscosity (m2/s)

μ :

Dynamic viscosity (kg/m/s)

μ 0 :

Limiting viscosity at zero shear rate

μ :

Limiting viscosity at the infinite shear rate

ϕ :

Dimensionless nanoparticle volume fraction

θ :

Dimensionless temperature

ψ :

Stream function

η :

Similarity variable

τ :

Extra stress tensor

τ w :

Surface shear stress

ρ f :

Density of the base fluid (kg/m3)

ρ p :

Density of the particles (kg/m3)

\(\rho_{{f_{\infty } }}\) :

Ambient density of the fluid

Γ:

Time constant

π :

Second invariant strain tensor

γ :

Williamson fluid parameter

α m :

Thermal diffusivity

ɛ :

Stretching ratio parameter

\(\tau_{xx} , \tau_{xy} , \tau_{yy} , \tau_{yx} , \tau_{yz} , \tau_{zy} , \tau_{zz} , \tau_{xz} , \tau_{zx}\) :

are extra stress tensor components

′:

Derivative with respect to η

w :

Wall

∞:

Ambient condition

References

  1. Sakiadis BC (1961) Boundary layer behavior on continuous solid surface. AIChE J 7:26–28

    Article  Google Scholar 

  2. Crane LJ (1970) Flow past a stretching plate. ZAMP 21:645–647

    Article  Google Scholar 

  3. Hiemenz K (1911) Die Grenzschicht an einem in den gleichformingen Flussigkeits-strom einge-tauchten graden Kreiszylinder. Dingler Polytechnic J 326:321–324

    Google Scholar 

  4. Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation point flow towards a stretching sheet. Heat Mass Transf 38:517–521

    Article  Google Scholar 

  5. Mahapatra TR, Gupta AS (2004) Stagnation-point flow of a viscoelastic fluid towards a stretching surface. Int J Nonlinear Mech 39:811–820

    Article  MATH  Google Scholar 

  6. Hayat T, Awais M, Qasim M, Hendi AA (2011) Effects of mass transfer on the stagnation point flow of an upper-converted Maxwell (UCM) fluid. Int J Heat Mass Transf 54:3777–3782

    Article  MATH  Google Scholar 

  7. Nadeem S, Hussain A, Vajravelu K (2010) Effects of heat transfer on the stagnation-point flow of a third order fluid over a shrinking sheet. Z Naturforsch 65(a):969–994

    Google Scholar 

  8. Kumari M, Nath G (1984) Unsteady incompressible boundary layer flow of a micropolar fluid at a stagnation-point. Int J Eng Sci 22:755–768

    Article  Google Scholar 

  9. Wang CY (2008) Stagnation flow towards a shrinking sheet. Int J Nonlinear Mech 43:377–382

    Article  Google Scholar 

  10. Bachok N, Ishak A, Pop I (2010) Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet. Phys Lett A 374:4075–4079

    Article  MATH  Google Scholar 

  11. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div 231:99–105

    Google Scholar 

  12. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  13. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 7:227–233

    Article  Google Scholar 

  14. Buongiorno J, Hu W (2005) Nanofluid coolants for advanced nuclear power plants. Paper no. 5705. In: Proceedings of ICAPP’05, Seoul, pp 15–19

  15. Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53(11):2477–2483

    Article  MATH  Google Scholar 

  16. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49(2):243–247

    Article  MathSciNet  Google Scholar 

  17. Gorla RSR, Chamkha AJ, Rashad AM (2011) Mixed convective boundary layer flow over a vertical wedge embedded in a Porous medium saturated with a nanofluid. J Nanoscale Res 6(207):1–9

    Google Scholar 

  18. Bachok N, Ishak A, Pop L (2012) The boundary layers of an unsteady stagnation-point flow in a nanofluid. Int J Heat Mass Transf 55:6499–6505

    Article  Google Scholar 

  19. Gireesha BJ, Mahanthesh B, Gorla RSR (2014) Suspended particle effect on nanofluid boundary layer flow past a stretching surface. J Nanofluids 3:1–11

    Article  Google Scholar 

  20. Nadeem S, Hussain ST (2014) Flow and heat transfer analysis of Williamson nanofluid. Appl Nanosci 4:1005–1012

    Article  Google Scholar 

  21. Aziz A (2009) A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul. 14:1064–1068

    Article  MathSciNet  Google Scholar 

  22. Makinde OD (2010) Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition. Int J Phys Sci 5(6):700–710

    Google Scholar 

  23. Gireesha BJ, Mahanthesh B (2013) Perturbation solution for radiating viscoelastic fluid flow and heat transfer with convective boundary condition in nonuniform channel with Hall current and chemical reaction. ISRN Thermodynamics 2013:1–14

    Article  Google Scholar 

  24. Alsaedi A, Awais M, Hayat T (2012) Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions. Commun Nonlinear Sci Numer Simul 17:4210–4223

    Article  MathSciNet  MATH  Google Scholar 

  25. Dapra SG (2007) Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture. Int J Rock Mech Min Sci 44:271–278

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (B.J.Gireesha) is thankful to the University Grants Commission, India, for the financial support under the scheme of Raman Fellowship for Post-Doctoral Research for Indian Scholars in USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Subba Reddy Gorla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorla, R.S.R., Gireesha, B.J. Dual solutions for stagnation-point flow and convective heat transfer of a Williamson nanofluid past a stretching/shrinking sheet. Heat Mass Transfer 52, 1153–1162 (2016). https://doi.org/10.1007/s00231-015-1627-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1627-y

Keywords

Navigation