Skip to main content
Log in

Helium permeation through a silicalite-1 tubular membrane

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A silicalite-1 tubular membrane was prepared on the inner surface of a porous α-alumina support. Helium permeation at different feed volumetric flows (11–41 mL/min) with different sweep flow rates (9–90 mL/min) at STP conditions was measured. The molar fraction was obtained as a function of the residence time ratio. The influences of the geometric parameters of the tubular system and the feed flow rates on the permeation through the membrane were investigated. The dependence of the permeances with the residence time ratio was experimentally obtained and we propose that this dependence is a useful design criterion for tubular membrane permeation systems. The best results in this work were obtained for Q He,in /Q N2,in  = 0.22 for V SS/V TS = 7.3. Also, the data showed that an appropriate combination of the flows and the area sections of the system resulted in an optimum value for the Péclet number of 0.3. The experimental data were reproduced by numerically solving the Maxwell–Stefan equations under the assumption that transport across the membrane can be modeled in terms of a Robin-type boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wong WC, Au LTY, Tellez Ariso C, Yeung KL (2001) Effects of synthesis parameters on the zeolite membrane growth. J Membr Sci 191:143–163

    Article  Google Scholar 

  2. McLeary EE, Jansen JC, Kapteijn F (2006) Zeolite based films, membranes and membrane reactors: progress and prospects. Microporous Mesoporous Mater 90:198–220

    Article  Google Scholar 

  3. Hernández MG, Salinas-Rodríguez E, Gómez S, Roa-Neri JAE, Rodríguez RF (2012) Zeolitic membranes and its principal applications. Mater Av 18:9–18 (in Spanish)

    Google Scholar 

  4. Hussain A, Seidel-Morgenstern A, Tsotsas E (2006) Heat and mass transfer in tubular ceramic membranes for membrane reactors. Int J Heat Mass Transf 49:2239–2253

    Article  Google Scholar 

  5. Caro J, Noack M (2008) Zeolite membranes—recent developments and progress. Microporous Mesoporous Mater 115:215–233 (and references therein)

    Article  Google Scholar 

  6. Daramola MO, Aransiola EF, Ojumu TV (2012) Potential applications of zeolite membranes in reaction coupling separation processes. Materials 5:2101–2136

    Article  Google Scholar 

  7. Gascon J, Kapteijn F, Zornoza B, Sebastián V, Casado C, Coronas J (2012) Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chem Mater 24:2829–2844

    Article  Google Scholar 

  8. Flanigen EM, Bennett JM, Grose RW, Cohen JP, Patton RL, Kirchner RM (1978) Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271:512–516

    Article  Google Scholar 

  9. Yan Y, Davis ME, Gavalas GR (1995) Preparation of zeolite ZSM-5 membranes by in situ crystallization on porous a-Al2O3. Ind Eng Chem Res 34:1652–1661

    Article  Google Scholar 

  10. Nishiyama N, Matsufuji T, Ueyama K, Matsukata M (1997) FER membrane synthesized by a vapor-phase transport method: its structure and separation characteristics. Microporous Mater 12:293–303

    Article  Google Scholar 

  11. Burggraaf AJ, Vroon ZAEP, Keizer K, Verweij H (1998) Permeation of single gases in thin zeolite MFI membranes. J Membr Sci 144:77–86

    Article  Google Scholar 

  12. van de Graaf JM, van der Bijl E, Stol A, Kapteijn F, Moulijn JA (1998) Effect of operating conditions and membrane quality on the separation performance of composite silicalite-1 membranes. Ind Eng Chem Res 37:4071–4083

    Article  Google Scholar 

  13. Masuda T, Sato A, Hara H, Kouno M, Hashimoto K (1994) Preparation of a dense ZSM-5 zeolite film on the outer surface of an alumina ceramic filter. Appl Catal A 111:143–150

    Article  Google Scholar 

  14. Kusakabe K, Murata A, Kuroda T, Morooka S (1997) Preparation of MFI-type zeolite membranes and their use in separating n-butane and i-butane. J Chem Eng Jpn 30:72–78

    Article  Google Scholar 

  15. Coronas J, Falconer JL, Noble RD (1997) Characterization and permeation properties of ZSM-5 tubular membranes. AIChE J 43:1797–1812

    Article  Google Scholar 

  16. Bernal MP, Coronas J, Menéndez M, Santamaría J (2004) Separation of CO2/N2 mixtures using MFI-type zeolite membranes. AIChE J 50:127–135

    Article  Google Scholar 

  17. Karger J, Ruthven DM (1992) Diffusion in zeolites and other microporous solids. Wiley, New York

    Google Scholar 

  18. Gump CJ, Lin X, Falconer JL, Noble RD (2000) Experimental configuration and adsorption effects on the permeation of C4 isomers through ZSM-5 zeolite membranes. J Membr Sci 173:35–52

    Article  Google Scholar 

  19. Oh HS, Kim MH, Rhee HK (1997) Synthesis of ZSM-5 zeolite membrane on the inner surface of a ceramic tube, progress in zeolite and microporous materials. Stud Surf Sci Catal 105:2217–2224

    Article  Google Scholar 

  20. Au LTY, Yeung KL (2001) An investigation of the relationship between microstructure and permeation properties of ZSM-5 membranes. J Membr Sci 194:33–55

    Article  Google Scholar 

  21. Tan X, Li K (2002) Modeling of nitrogen separation in a LSCF hollow-fiber membrane module. AIChE J 48:1469–1477

    Article  Google Scholar 

  22. Xiao W, Chen Z, Zhou L, Yang J, Lu J, Wang J (2011) A simple seeding method for MFI zeolite membrane synthesis on macroporous support by microwave heating. Microporous Mesoporous Mater 142:154–160

    Article  Google Scholar 

  23. van de Graaf JM, Kapteijn F, Moulijn JA (1998) Methodological and operational aspects of permeation measurements on silicalite-1 membranes. J Membr Sci 144:87–104

    Article  Google Scholar 

  24. van de Graaf JM, Kapteijn F, Moulijn JA (1999) Permeation of weakly adsorbing components through a silicalite-1 membrane. Chem Eng Sci 54:1081–1092

    Article  Google Scholar 

  25. Tawalbeh M, Tezel FH, Kruczek B, Letaief S, Detellier C (2013) Synthesis and characterization of silicalite-1 membrane prepared on a novel support by the pore plugging method. Porous Mater 20:1407–1421

    Article  Google Scholar 

  26. Aoki K, Tuan VA, Falconer JL, Noble RD (2000) Gas permeation properties of ion-exchanged ZSM-5 zeolite membranes. Microporous Mesoporous Mater 39:485–492

    Article  Google Scholar 

  27. Bayati B, Belbasi Z, Ejtemaei M, Charchi Aghdam N, Babaluo AA, Haghighi M, Drioli E (2013) Separation of pentane isomers using MFI zeolite membrane. Sep Purif Technol 106:56–62

    Article  Google Scholar 

  28. Alfaro S, Arruebo M, Coronas J, Menéndez M, Santamaría J (2001) Preparation of MFI type tubular membranes by steam-assisted crystallization. Microporous Mesoporous Mater 50:195–200

    Article  Google Scholar 

  29. Alfaro S, Valenzuela MA (2006) Zeolite membranes prepared by the dry gel method for gas separation. Adv Mater Technol Mater Proc J 8:63–66

    Google Scholar 

  30. Bird RB, Stewart WE, Lightfoot EN (2001) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  31. Cussler EL (1997) Diffusion, mass transfer in fluid systems, 2nd edn. Cambridge University Press, Cambridge, MA

    Google Scholar 

  32. Valdés-Parada FJ, Ochoa-Tapia JA, Salinas-Rodríguez E, Gómez-Torres S, Hernández MG (2014) Upscaled model for dispersive mass transfer in a tubular porous membrane separator. Rev Mex Ing Quím 13:237–257

  33. Lipnizki F, Field RW (2001) Mass transfer performance for hollow fibre modules with shell-side axial feed flow: using an engineering approach to develop a framework. J Membr Sci 193:195–208

    Article  Google Scholar 

  34. Takata Y, Tsuru T, Yoshioka T, Asaeda M (2002) Gas permeation properties of MFI zeolite membranes prepared by the secondary growth of colloidal silicalite and application to the methylation of toluene. Microporous Mesoporous Mater 54:257–268

    Article  Google Scholar 

  35. Jareman F, Hedlund J, Creaser D, Sterte J (2004) Modeling of single gas permeation in real MFI membranes. J Membr Sci 236:81–89

    Article  Google Scholar 

  36. Jia MD, Chen B, Noble RD, Falconer JL (1994) Ceramic-zeolite composite membranes and their application for separation of vapor/gas mixtures. J Membr Sci 90:1–10

    Article  Google Scholar 

  37. Lovallo MC, Gouzinis A, Tsapatsis M (1998) Synthesis and characterization of oriented MFI membranes prepared by secondary growth. AIChE J 44:1903–1913

    Article  Google Scholar 

  38. Evans RB, Watson GM, Mason EA (1961) Gaseous diffusion in porous media at uniform pressure. J Chem Phys 35:2076–2083

    Article  Google Scholar 

Download references

Acknowledgments

MGH acknowledges partial financial support from PROMEP 22311-106, 913022. The authors gratefully acknowledge Professors R.F. Rodríguez and A. Soria for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Salinas-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, M.G., Salinas-Rodríguez, E., Gómez, S.A. et al. Helium permeation through a silicalite-1 tubular membrane. Heat Mass Transfer 51, 847–857 (2015). https://doi.org/10.1007/s00231-014-1460-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1460-8

Keywords

Navigation