Skip to main content
Log in

Experimental investigation of thermal contact conductance across GFRP–GFRP joint

  • Short Communication
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An experimental apparatus was established for measurements of thermal contact conductance of glass fiber reinforced plastic (GFRP) to GFRP interface. The influence of several primary factors on thermal contact conductance was investigated. Thermal contact conductance across GFRP to GFRP joint increases with increasing contact pressure, while decreases with increasing surface roughness. Higher interfacial temperature causes higher thermal contact conductance due to temperature dependency of hardness of test materials. The values of thermal contact conductance across stainless steel/GFRP joint are 1.7 times of the ones for GFRP/GFRP junction under the same experimental conditions. A comparison of experimental data with Mikic and CMY models shows that existing models overestimate experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

\( h \) :

Thermal contact conductance across joint (W m−2 K−1)

\( q \) :

Heat flux across joint (W m−2)

\( \Delta T \) :

Temperature difference between contact surfaces (K)

\( T_{1} \) :

Temperatures of upper contact surface (K)

\( T_{2} \) :

Temperatures of lower contact surface (K)

\( k \) :

Harmonic mean thermal conductivity (W m−1 K−1)

\( P \) :

Contact pressure (Pa)

\( H \) :

Material hardness (Pa)

\( l \) :

Length (m)

\( I \) :

Heating current (A)

\( V \) :

Voltage (V)

\( \Delta \) :

Difference

\( \tan \theta \) :

Surface asperity slope

\( \sigma \) :

Surface roughness (μm)

1:

Upper contact surface

2:

Lower contact surface

References

  1. Madhusudana CV (1996) Thermal contact conductance, 1st edn. Springer, New York

    Book  Google Scholar 

  2. Cooper MG, Mikic BB, Yovanovich MM (1969) Thermal contact conductance. Int. J. Heat Mass Transfer. 12:279–300

    Article  Google Scholar 

  3. Mikic BB (1974) Thermal contact conductance; theoretical considerations. Int. J. Heat Mass Transfer. 17:205–214

    Article  Google Scholar 

  4. MajidBahrami M, MichaelYovanovich J RichardCulham (2005) Thermal contact resistance at low contact pressure: effect of elastic deformation. Int. J. Heat Mass Transfer. 48:3284–3293

    Article  Google Scholar 

  5. Mantelli MBH, Yovanovich MM (1998) Compact analytical model for overall thermal resistance of bolted joints. Int. J. Heat Mass Transfer. 41:1255–1266

    Article  Google Scholar 

  6. Laraqi N (1999) Thermal constriction resistance of coated solids-static and sliding contacts. Int. Comn. Heat Mass Transfer. 39:831–839

    Google Scholar 

  7. Laraqi N, Bairi A (2002) Theory of thermal resistance between solids with randomly sized and located contacts. Int. J. Heat Mass Transfer. 41:1255–1266

    Google Scholar 

  8. Sridhar MR, Yovanovich MM (1996) Thermal contact conductance of tool steel and comparison with model. Int. J. Heat Mass Transfer. 39:831–839

    Article  Google Scholar 

  9. Marotta EE, Fleycher LS (1998) Thermal contact conductance of selected polymeric materials. J Thermophys Heat Transfer 12:374–381

    Article  Google Scholar 

  10. Xiao Y, Sun H, Xu L, Feng H, Zhu H (2004) Thermal contact conductance between solid interfaces under low temperature and vacuum. Rev Sci Instrum 75:3074–3076

    Article  Google Scholar 

  11. Mykhaylyk VB, Burt M, Ursachi C, Wagner A (2012) Thermal contact conductance of demountable in vacuum copper-copper joint between 14 and 100 K. Rev Sci Instrum 83:034902

    Article  Google Scholar 

  12. Marotta EE, Fleycher LS (1996) Thermal contact conductance for aluminum and stainless-steel contacts.J. Thermophys Heat Transfer. 10:334–342

    Article  Google Scholar 

  13. Parihar SK (1997) Thermal contact resistance of elastomer to metal contacts. Ph.D. thesis, University of Maryland

  14. Parihar SK, Wright NT (1997) Thermal contact resistance at elastomer to metal interfaces. Int Commun Heat Mass Transfer 24:1083–1092

    Article  Google Scholar 

  15. Fuller JJ, Marotta EE (1998) Thermal contact conductance of metal/polymer joints. J Thermophys Heat Transfer 14:283–286

    Article  Google Scholar 

  16. Ochterbeck JM, Peterson GP (1992) Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures. J Heat Transfer 114:21–29

    Article  Google Scholar 

  17. Marotta E (1997) Thermal contact conductance of non-flat, non-metallic, isotropic roughened coated surfaces: analytical and experimental investigation. Ph.D. thesis, Texas A&M University

  18. Merrill CT, Garimella SV (2011) Measurement and prediction of thermal contact resistance across coated joints. Exp. Heat Transfer. 24:179–200

    Article  Google Scholar 

  19. Antonetti VW, Whittle TD, Simons RE (1993) An approximate thermal contact conductance correlation. J Electron Packag 115:131–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Wang, R. Experimental investigation of thermal contact conductance across GFRP–GFRP joint. Heat Mass Transfer 51, 433–439 (2015). https://doi.org/10.1007/s00231-014-1425-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1425-y

Keywords

Navigation