Skip to main content
Log in

Simplified heat transfer modeling for Vapour Phase Soldering based on filmwise condensation for different horizontal Printed Circuit Boards

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The paper presents a method for investigating heat transfer during a specific reflow soldering method, Vapour Phase Soldering (VPS), where a horizontal Printed Circuit Board (PCB) is heated in vapour medium. The paper presents refined descriptions of filmwise condensation which were investigated and adjusted for the VPS process. The results show a proper and fast approximation of measurements. The dependence of the PCB characteristic length is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

T :

Temperature, K

Q :

Thermal energy,

h :

Heat transfer coefficient, W/m2 K

A :

Body surface, m2

t :

Time, s

L :

Characteristic length, m

H :

Second lateral dimension of PCB, m

T :

Thickness of the PCB, m

A :

Surface, m2

k :

Thermal conductivity, W/m K

hlv :

Latent heat of vaporization, kJ/kg

ρ :

Density, kg/m3

α :

Inclination angle, °

g :

Gravitational constant, m/s2

μ :

Dynamic viscosity, kg/m s

Nu :

Nusselt number, dimensionless

Ra :

Rayleigh number, dimensionless

b :

Body

sat :

Saturation

FR4 :

Flame-Retardant 4, PCB type

l :

Liquid

v :

Vapour

amb :

Ambient

NL :

Nimmo–Leppert

B :

Bejan

GG :

Gerstmann–Griffith

LE :

Leider

VPS :

Vapour Phase Soldering

References

  1. Leicht H, Thumm A (2008) Today’s Vapor Phase Soldering—an optimized reflow technology for lead free soldering. SMTA 2008:45

    Google Scholar 

  2. Pfahl RC, Ammann HH (1975), Method for soldering, fusing or bracing. US Patent 3,866,307

  3. Leider W (2002) Dampfphasenlöten – Grundlagen und praktische Anwendung. Eugen G. Leuze Verlag, Bad Saulgau, pp 31–39

    Google Scholar 

  4. Krammer O, Garami T (2011) Comparing the intermetallic layer formation of infrared and vapour phase soldering. IEEE-ISSE 34:196–201

    Google Scholar 

  5. Duck A, Zabel C (2010) Vapour phase reflow—profiling for lead free alloys. SMTA 2010:2

    Google Scholar 

  6. Codreanu ND, Plotog I et al (2009) Lead-free electronic system integrated in a vapour phase soldering equipment prototype. IEEE-ISSE 32:1–5

    Google Scholar 

  7. Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular the their planes. Int Proc R Soc A 201:192–196

    Article  MATH  Google Scholar 

  8. Som SM, Kimball JT, Hermanson JC, Allen JS (2007) Stability and heat transfer characteristics of unsteady condensing and evaporating films. Int J Heat Mass Transf 50:1927–1937

    Article  Google Scholar 

  9. Géczy A, Illés B, Zs Péter, Zs Illyefalvi-Vitéz (2013) Characterization of vapour phase soldering process zone with pressure measurements. Solder Surf Mt Technol 25:99–106

    Article  Google Scholar 

  10. Nusselt W (1916) Die Oberflachenkondensation der Wasserdampfes. Z Ver Dt Ing 60:541–569

    Google Scholar 

  11. Nimmo BG, Leppert G (1970) Laminar film condensation on a finite horizontal surface. In: 4th Internatioal Heat Transfer Conference, 6:2.2

  12. Chiou JS, Chang TB (1994) Laminar film condensation on a horizontal disk. Heat Mass Transfer 29:141–144

    Google Scholar 

  13. Marto PJ (1998) Condensation. In: Rohsenow WM, Hartnett JP, Cho YI (eds) Handbook of heat transfer, 3rd edn. McGraw-Hill, New York, pp 14.1–14.27

    Google Scholar 

  14. Bejan A (1991) Film condensation on an upward facing plate with free edges. Int J Heat Mass Transfer 34:582–587

    Article  Google Scholar 

  15. Rohsenow WM (1956) Heat transfer and temperature distribution in laminar film condensation. Trans ASME 78:1645–1648

    Google Scholar 

  16. Collier JG, Thome JR (1994) Convective boiling and condensation, 3rd edn. Clarendon Press, Oxford, p 484

    Google Scholar 

  17. Gerstmann J, Griffith P (1967) Laminar film condensation on the underside of horizontal and inclined surfaces. Int J Heat Mass Transfer 10:541–569

    Article  Google Scholar 

  18. Geczy A, Illyefalvi-Vitez ZS, Szoke P (2011) Investigations on vapor phase soldering process in an experimental soldering station. Micro Nanosyst 2:170–177

    Article  Google Scholar 

  19. Datasheet of Galden HT170, http://www.daitokutech.com/products/galden/data/HT170.pdf. Accessed 10 April 2013

  20. Drew TB (1954) Personal communication. In: McAdams WH (ed) Heat transmission, 3rd edn. McGraw-Hill, New York, p 330

    Google Scholar 

  21. Illés B (2013) Modeling galden layer formation on PCB surface during vapour phase soldering. IEEE-SIITME 19:69–74

    Google Scholar 

  22. Illés B, Géczy A (2012) Multi-physics modelling of a vapour phase soldering (VPS) system. Appl Therm Eng 48:54–62

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Géczy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Géczy, A., Illés, B., Péter, Z. et al. Simplified heat transfer modeling for Vapour Phase Soldering based on filmwise condensation for different horizontal Printed Circuit Boards. Heat Mass Transfer 51, 335–342 (2015). https://doi.org/10.1007/s00231-014-1386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1386-1

Keywords

Navigation