Skip to main content
Log in

Experimental investigation of the Cu/R141b nanofluids on the evaporation/boiling heat transfer characteristics for surface with capillary micro-channels

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An experimental study was conducted to investigate the heat transfer characteristic of a vertical copper plate with rectangular micro-channels. In this research, Cu/R141b nanofluids were used as the working fluid. Three different volume concentrations—0.001, 0.01, and 0.1 %—of Cu nanoparticles with an average diameter of 20 nm dispersed in R141b were prepared. Experiments were performed to measure thermal resistance of the microchannel surface under a steady operating pressure range of 0.86 × 105 Pa to 2 × 105 Pa. Thermal resistance weakened with addition of nanoparticles into the base fluid. The maximum reduction effect of the thermal resistance was 50 %, which corresponds to 0.01 % volume concentration of nanofluid at low operating pressure. The operating pressure significantly affects thermal performance of the microchannel surface. This paper also studied heat transfer characteristics for a Cu nanoparticle-coated surface with rectangular microchannels, which were produced by heating in different volume concentrations from 0.001 to 0.1 %. Nanoparticle layer on the micro-channel surface is responsible for enhanced heat transfer of nanofluids with 0.001 and 0.01 % volume concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

q :

Heat flux (W m−2)

l :

Distance between two thermocouples (m)

R :

Thermal resistance (m2 K W−1)

T t :

Temperature of the copper plate with micro-channels (K)

T s :

Saturation temperature of the working fluid (K)

T 1, T 2, T 3, T 4 :

Temperature of the copper heater (K)

λ :

Thermal conductivity of the pure copper (W m−2 K−1)

References

  1. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 231:99–105

    Google Scholar 

  2. Lee S, Choi SUS, Eastman JA (1995) Measuring thermal conductivity of fluids containing oxide nano-particles. Trans ASME 121:280–289

    Article  Google Scholar 

  3. Choi SUS, Wang X, Xu W (1999) Thermal conductivity of nano-particle-fluid mixture. J Thermophys Heat Transfer 13(4):474–480

    Article  Google Scholar 

  4. Xie H, Wang J, Xi T, Liu Y (2002) Thermal conductivity of suspensions containing nano-sized SiC Particles. Int J Thermophys 23(2):571–580

    Article  Google Scholar 

  5. Xie X, Lee H, Youn W, Choi M (2003) Nano-fluids containing multiwalled carbon nano-tubes and their enhanced thermal conductivities. J Appl Phys 94(8):4967–4971

    Article  Google Scholar 

  6. Choi SUS, Eastman JA, Li S, Yu W, Thompson J (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based containing copper nano-particles. Appl Phys Lett 78(6):718–720

    Article  Google Scholar 

  7. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nano-fluids. J Heat Transfer 125:567–574

    Article  Google Scholar 

  8. Li CH, Peterson GP (2007) The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys 101:044312

    Article  Google Scholar 

  9. Lee JH, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, Choi CJ (2008) Effective viscosities and thermal conductivities of aqueous nanofluids containning low volume concnentrations of Al2O3 nanoparticles. Int J Heat Mass Transfer 51(11–12):2651–2656

    Article  Google Scholar 

  10. Xuan Y, Li Q (2000) Heat transfer emhancement of nano-fluids. Int J Heat Fluid Flow 21(1):58–64

    Article  MathSciNet  Google Scholar 

  11. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nano-fluids. J Heat Transfer 125:151–155

    Article  Google Scholar 

  12. Fotukian SM, Esfahany MN (2010) Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Transf 37(2):214–219

    Article  Google Scholar 

  13. Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1–19

    Article  MATH  Google Scholar 

  14. Vassallo P, Kumar R, D’Amico S (2004) Pool boiling heat transfer experiments in silica-water nano-fluids. Int J Heat Mass Transf 47(2):407–411

    Article  Google Scholar 

  15. Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transfer 46(5):851–862

    Article  Google Scholar 

  16. Kwark SM, Kumar R, Moreno G, Yoo J, You SM (2010) Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transfer 53(5–6):972–981

    Article  Google Scholar 

  17. Vassallo P, Kumar R, D’Amico S (2004) Pool boiling heat transfer experiments in silica-water nanofluids. Int J Heat Mass Transfer 47(2):407–411

    Article  Google Scholar 

  18. Wen D, Ding Y (2005) Experimental investigation into the pool boiling heat transfer of aqueous based alumina nanofluids. J Nanopart Res 7:265–274

    Article  Google Scholar 

  19. Kim S, Bang IC, Buongiorno J (2007) Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transfer 45(7):4105–4116

    Article  Google Scholar 

  20. Taylor RA, Phelan PE (2009) Pool boiling of nanofluids: comprehensive review of existing data and limited new data. Int J Heat Mass Transfer 52(23–24):5339–5347

    Article  Google Scholar 

  21. White SB, Shih AJ, Pipe KP (2010) Effects of nanoparticle layering on nanofluid and base fluid pool boiling heat transfer from a horizontal surface under atmospheric pressure. J Appl Phys 107(11):114302–114307

    Article  Google Scholar 

  22. Jeong YH, Chang WJ, Chang SH (2008) Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids. Int J Heat Mass Transfer 51(11–12):3025–3031

    Article  Google Scholar 

  23. Suriyawong A, Wongwises S (2010) Nucleate pool boiling heat transfer characteristics of TiO2-water nanofluids at very low concnentration. Exp Thermal Fluid Sci 34(8):992–999

    Article  Google Scholar 

  24. Ahmed O, Hamed MS (2012) Experimental Investigation of the effect of particle deposition on pool boiling of nanofluids. Int J Heat Mass Transfer 55(13–14):3423–3436

    Article  Google Scholar 

  25. Liu ZH (2010) Compositive effect of nanoparticle parameter on thermal performance of cylindrical micro-grooved heat pipe using nanofluids. Int J Therm Sci 500(4):558–568

    Google Scholar 

  26. Wei WC, Tsai SH, Yang SY, Kang SW (2005) Effect of nano-fluid concentration on heat pipe thermal performance. IASME Trans 2:1432–1439

    Google Scholar 

  27. Kang SW, Wei WC, Yang SH (2006) Experimental investigation of silver nano-fluid on heat pipe thermal performance. Appl Therm Eng 26(17/18):2377–2382

    Article  Google Scholar 

  28. Han WS, Rhi SH (2011) Thermal characteristics of Grooved Heat Pipe with hybrid nanofluids. Thermal Sci 15(1):195–206

    Article  Google Scholar 

  29. Do KH, Ha HJ, Jang SP (2010) Thermal resistance of screen mesh wick heat pipes using the water-based Al2O3 nanofluids. Int J Heat Mass Transfer 53(25–26):5888–5894

    Article  Google Scholar 

  30. Tsai CY, Chien HT, Ding PP, Chan B, Luh TY, Chen PH (2004) Effect of structural character of gold nanoparticles in nanofluids on heat pipe thermal performance. Mater Lett 58:1461–1465

    Article  Google Scholar 

  31. [31] Chen YT, Wei WC, Kang SW, Yu CS (2008) Effect of nanofluids on flat heat pipe thermal performance. In: Proceedings of 24th IEEE semiconductor thermal measurement and management symposium. pp 16–20

  32. Kang S, Wei W, Tsai S, Huang C (2009) Experimental investigation of nanofluids on sintered heat pipe thermal performance. Appl Therm Eng 29(5/6):973–979

    Article  Google Scholar 

  33. Xue HS, Fan JR, Hu YC, Hong RH, Cen KF (2006) The interface effect of carbon nanotube suspension on the thermal performance of a two-phase closed thermosyphon. J Appl Phys 100(10):104909

    Article  Google Scholar 

  34. Noie SH, Heris SZ, Kahani M, Nowee SM (2009) Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon. Int J Heat Mass Transfer 52(30):700–705

    Google Scholar 

  35. Huminic G, Huminic A, Morjan I, Dumitrache F (2010) Experimental study of the thermal performance of thermosyphon heat pipe using iron oxide nanoparticles. Int J Heat Mass Transfer 54(1–3):656–661

    Google Scholar 

  36. Qu J, Wu HY, Cheng P (2010) Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids. Int Commun Heat Mass Transf 37(2):111–115

    Article  Google Scholar 

  37. Ma HB, Wilson C, Borgmeyer B, Park K, Yu Q, Choi SUS, Triumala M (2006) Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Appl Phys Lett 88(14):143116

    Article  Google Scholar 

  38. Ma HB, Wilson C, Park K, Choi SUS, Tirumala T (2006) An experimental investigation of heat transport capability in a nanofluids oscillating heat pipe. J Heat Transfer 128(11):1213–1216

    Article  Google Scholar 

  39. Do KH, Jang SP (2010) Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int J Heat Mass Transfer 53:2183–2192

    Article  MATH  Google Scholar 

  40. Diao YH, Liu JR, Zhao YH (2009) An experimental investigation on heat transfer characteristics for micro-capillary evaporator. Exp Heat Transfer 22(2):87–98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhua Diao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, Y., Liu, Y., Wang, R. et al. Experimental investigation of the Cu/R141b nanofluids on the evaporation/boiling heat transfer characteristics for surface with capillary micro-channels. Heat Mass Transfer 50, 1261–1274 (2014). https://doi.org/10.1007/s00231-014-1325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1325-1

Keywords

Navigation