Skip to main content
Log in

Constant heat flux solution for mixed convection boundary layer viscoelastic fluid

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The mixed convection boundary layer of a viscoelastic fluid past a circular cylinder with constant heat flux is discussed. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing non-similar partial differential equations are transformed into dimensionless forms and then solved numerically using the Keller-box method by augmenting an extra boundary condition at infinity. Numerical results obtained in the form of velocity distributions and temperature profiles are presented for a range of values of the dimensionless viscoelastic fluid parameter. It is found that for some values of the viscoelastic parameter and some negative values of the mixed convection parameter (opposing flow) the momentum boundary layer separates from the cylinder. Heating the cylinder delays separation and can, if the cylinder is warm enough, suppress the separation completely. Similar to the case of a Newtonian fluid, cooling the cylinder brings the separation point nearer to the lower stagnation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\( C_{f} \) :

Skin friction coefficient

\( f(\eta ),F(x,y) \) :

Dimensionless stream functions

\( f^{\prime } (\eta ) \) :

Velocity profiles

\( g \) :

Acceleration due to gravity

\( k_{0} \) :

Constant material

\( K \) :

Viscoelastic parameter

\( Pr \) :

Prandtl number

\( q_{w} \) :

Constant wall heat flux

\( Re \) :

Reynolds number

\( T \) :

Fluid temperature

\( T_{w} \) :

Temperature at the surface of the cylinder

\( T_{\infty } \) :

Temperature of the ambient fluid

\( \bar{u},\bar{v} \) :

Velocity components along \( \bar{x} \) and \( \bar{y} \) directions

\( u,v \) :

Dimensionless velocity components

\( \bar{u}_{e} (\bar{x}) \) :

Velocity outside boundary layer

\( u_{e} (x) \) :

Dimensionless velocity outside boundary layer

\( \bar{x},\bar{y} \) :

Dimensional Cartesian coordinates

\( x,y \) :

Dimensionless Cartesian coordinates

\( x_{s} \) :

Separation point

\( \alpha_{{}} \) :

Thermal diffusivity of the fluid

\( \beta \) :

Volumetric thermal expansion coefficient of the fluid

\( \lambda \) :

Mixed convection parameter

\( \lambda_{c} (K) \) :

Critical value of \( \lambda \)

\( \lambda_{0} \) :

Value of \( \lambda \) below which the boundary layer separation is not possible

\( \eta \) :

Similarity variable

\( \mu \) :

Dynamic viscosity of the fluid

\( \nu \) :

Kinematic viscosity of the fluid

\( \rho \) :

Fluid density

\( \theta (x,y), \theta (\eta ) \) :

Dimensionless temperatures

\( \theta_{w} (x) \) :

Local wall temperature distribution

\( \psi \) :

Stream function

References

  1. Dunn JE, Rajagopal KR (1995) Fluids of differential type: critical review and thermodynamic analysis. Int J Eng Sci 33:689–729

    Article  MathSciNet  MATH  Google Scholar 

  2. Ariel PD (1995) Stagnation point flow of a viscoelastic fluid towards a moving plate. Int J Eng Sci 33:1679–1687

    Article  MATH  Google Scholar 

  3. Ariel PD (2001) Axisymmetric flow of a second grade fluid past a stretching sheet. Int J Eng Sci 39:529–533

    Article  MATH  Google Scholar 

  4. Rajagopal KR, Renardy M, Renardy Y, Wineman AS (1986) Flow of viscoelastic fluids between plates rotating about distinct axes. Rheol Acta 25:459–467

    Article  MATH  Google Scholar 

  5. Rajagopal KR (1992) Flow of viscoelastic fluids between rotating disks. Theor Comput Fluid Dyn 3:185–206

    Article  MATH  Google Scholar 

  6. Rivlin RS, Ericksen JL (1955) Stress deformation relations for isotropic materials. J Ration Mech Anal 4:323–425

    MathSciNet  MATH  Google Scholar 

  7. Byron RB (1977) Slow viscoelastic radial flow between parallel disks. Appl Sci Res 33:385–404

    MATH  Google Scholar 

  8. Cortell R (1994) Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int J Non Linear Mech 29:155–161

    Article  MATH  Google Scholar 

  9. Cortell R (2006) Anote on flowand heat transfer of a viscoelastic fluid over a stretching sheet. Int J Non Linear Mech 41:78–85

    Article  MATH  Google Scholar 

  10. Abel MS, Khan SK, Prasad KV (2002) Study of visco-elastic fluid flow and heat transfer over a stretching sheet with variable viscosity. Int J Non Linear Mech 37:81–88

    Article  MATH  Google Scholar 

  11. Sonth RM, Khan SK, Abel MS, Prasad KV (2002) Heat and mass transfer in a visco-elastic fluid flow over an accelerating surface with heat source/sink and viscous dissipation. Heat Mass Transf 38:213–220

    Article  Google Scholar 

  12. Hayat T, Abbas Z, Sajid M (2006) Series solution for the upper-convected Maxwell fluid over a porous stretching plate. Phys Lett A 358:396–403

    Article  MATH  Google Scholar 

  13. Hayat T, Abbas Z, Sajid M, Asghar S (2007) The influence of thermal radiation on MHD flow of a second-grade fluid. Int J Heat Mass Transf 50:931–941

    Article  MATH  Google Scholar 

  14. Hayat T, Abbas Z, Pop I (2008) Mixed convection in the stagnation point flow adjacent to a vertical surface in a viscoelastic fluid. Int J Heat Mass Transf 51:3200–3206

    Article  MATH  Google Scholar 

  15. Sajid M, Hayat T, Pop I (2009) Stretching a plane surface in a viscoelastic fluid with prescribed skin friction. Numer Methods Partial Diff Equ 25:1342–1352

    Article  MathSciNet  MATH  Google Scholar 

  16. K-L Hsiao (2010) Viscoelastic fluid over a stretching sheet with electromagnetic effects and nonuniform heat source/sink. Hindawi Publishing Corporation Mathematical Problems in Engineering, vol 2010, article ID 740943

  17. Harnoy A (1987) An investigation into the flow of elastico-viscous fluids past a circular cylinder. Rheol Acta 2:493–498

    Article  Google Scholar 

  18. Anwar I, Amin S, Pop I (2008) Mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder. Int J Non Linear Mech 43:814–821

    Article  MATH  Google Scholar 

  19. Sharidan S, Amin S, Pop I (2006) The effect of g-jitter on heat transfer from a sphere with constant heat flux. J Energy Heat Mass Transf 28:1–18

    Google Scholar 

  20. Cebeci T, Bradshaw P (1984) Physical and computational aspects of convective heat transfer. Springer, New York

    MATH  Google Scholar 

  21. Kumari M, Takhar HS, Nath G (1995) Nonsimilar mixed convection flow of a non-Newtonian fluid past a vertical wedge. Acta Mech 113:205–213

    Article  MATH  Google Scholar 

  22. Ariel PD (2002) On extra boundary condition in the stagnation point flow of a second grade fluid. Int J Eng Sci 40:145–162

    Article  MathSciNet  MATH  Google Scholar 

  23. Nazar R, Amin N, Pop I (2004) Mixed convection boundary layer flow from a horizontal circular cylinder with a constant surface heat flux. Int J Heat Mass Transf 40:219–227

    Article  Google Scholar 

  24. Merkin JH (1977) Mixed convection from a horizontal circular cylinder. Int J Heat Mass Transf 20:73–77

    Article  Google Scholar 

  25. Dunn JE, Rajagopal KR (1995) Flow of differential type, critical review and thermodynamic analysis. Int J Eng Sci 33:689–729

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by a research grant (Vot FRGS No. 4F109 and 02H80) from Universiti Teknologi Malaysia, UTM, MOHE and would like to express many thanks to an anonymous reviewer for the valuable comment and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rahman Mohd Kasim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohd Kasim, A.R., Mohammad, N.F., Shafie, S. et al. Constant heat flux solution for mixed convection boundary layer viscoelastic fluid. Heat Mass Transfer 49, 163–171 (2013). https://doi.org/10.1007/s00231-012-1075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1075-x

Keywords

Navigation