Skip to main content
Log in

Effect of surface radiation heat transfer on the optimal distribution of discrete heat sources under natural convection

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Experiments have been conducted for natural convection heat transfer from protruding discrete heat sources, mounted at different positions on a substrate, to determine the optimal configuration, and to study the effect of surface radiation on them, which reduces their temperature upto 12 %. The optimal configuration has been determined by a non-dimensional geometric distance parameter (λ). An empirical correlation has been proposed between the non-dimensional steady state temperature (θ) and λ, by taking into account the effect of surface radiation heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Area of the heat source, m 2

F :

Shape factor between the surfaces of heat sources

g :

Gravitational acceleration, 9.81   m/s 2

Gr :

Grashof number, \(g\beta(T_{hs}-T_{\infty})L^{3}/\nu^{2}\)

\(Gr^{\ast}\) :

Modified Grashof number, \(g \beta(\Updelta T_{ref})L^{3}/\nu^{2}\)

h :

Heat transfer coefficient, W/m 2 °C

I :

Heat source input current, A

k :

Thermal conductivity, W/m K

L :

Length of the heat source, m

Nu :

Nusselt number, h conv L/k f

\(q^{\ast}\) :

Non-dimensional heat flux, \(Q_{supplied}L/Ak_{f}T_{\infty}\)

Q :

Rate of heat transfer, W

Ra :

Rayleigh number, GrPr

t :

Thickness of the substrate, m

t i :

Thickness of the insulation, m

T :

Temperature, K

v :

Volume of the heat source, m 3

V :

Heat source input voltage, V

XY :

Centroid, with the origin fixed at the left bottom corner of the heat source 51, m

Z :

Geometric parameter, X/Y

d 2 i :

Sum of the square of the distances, for each configuration, from the centroid of each heat source of that configuration, to the centroid of that particular configuration, m 2

β:

Isobaric thermal expansion coefficient of air, 1/T mean K −1

\(\Updelta T_{ref}\) :

Reference temperature, Q supplied L/Ak f ,   K

\(\varepsilon\) :

Hemispherical emissivity of the surfaces of heat source

λ:

Non-dimensional geometric distance parameter

σ:

Stefan Boltzmann constant, 5.67 × 10−8, W/m 2 K 4

θ:

Non-dimensional temperature, \((T_{maximum}-T_{\infty})/\Updelta T_{ref}\)

\(\infty\) :

Ambient

i :

For each heat source

c :

For each configuration

cond:

Conduction

conv:

Convection

f:

Fluid (air)

rad:

Radiation

hs:

Heat source

References

  1. Bazylak A, Djilali N, Sinton D (2006) Natural convection in an enclosure with distributed heat sources. Numer Heat Transf Part A Appl 49(7):655–667

    Article  Google Scholar 

  2. Bhowmik H, Tou K (2005) Experimental study of transient natural convection heat transfer from simulated electronic chips. Exp Thermal Fluid Sci 29(4):485–492

    Article  Google Scholar 

  3. Calcagni B, Marsili F, Paroncini M (2005) Natural convective heat transfer in square enclosures heated from below. Appl Therm Eng 25(16):2522–2531

    Article  Google Scholar 

  4. Chadwick M, Webb B, Heaton H (1991) Natural convection from two-dimensional discrete heat sources in a rectangular enclosure. Int J Heat Mass Transf 34 (7):1679–1693

    Article  Google Scholar 

  5. Chen S, Liu Y (2002) An optimum spacing problem for three-by-three heated elements mounted on a substrate. Heat Mass Transf 39(1):3–9

    Article  Google Scholar 

  6. Chen S, Liu Y, Chan S, Leung C, Chan T (2001) Experimental study of optimum spacing problem in the cooling of simulated electronic package. Heat Mass Transf 37(2):251–257

    Article  Google Scholar 

  7. Da Silva A, Lorente S, Bejan A (2004) Optimal distribution of discrete heat sources on a wall with natural convection. Int J Heat Mass Transf 47(2):203–214

    Article  MATH  Google Scholar 

  8. Deng Q, Tang G, Li Y, Ha M (2002) Interaction between discrete heat sources in horizontal natural convection enclosures. Int J Heat Mass Transf 45(26):5117–5132

    Article  MATH  Google Scholar 

  9. Desrayaud G, Fichera A, Lauriat G (2007) Natural convection air-cooling of a substrate-mounted protruding heat source in a stack of parallel boards. Int J Heat Fluid Flow 28(3):469–482

    Article  Google Scholar 

  10. Dias T et al. (2006) Optimal location of heat sources on a vertical wall with natural convection through genetic algorithms. Int J Heat Mass Transf 49(13–14):2090–2096

    Article  MathSciNet  MATH  Google Scholar 

  11. Fujii M, Gima S, Tomimura T, Zhang X (1996) Natural convection to air from an array of vertical parallel plates with discrete and protruding heat sources. Int J Heat Fluid Flow 17(5):483–490

    Article  Google Scholar 

  12. Liu Y, Phan-Thien N (2000) An optimum spacing problem for three chips mounted on a vertical substrate in an enclosure. Numer Heat Transf Part A Appl 37(6):613–630

    Article  Google Scholar 

  13. Liu Y, Phan-Thien N, Leung C, Chan T (1999) An optimum spacing problem for five chips on a horizontal substrate in a vertically insulated enclosure. Comput Mech 24(4):310–318

    Article  MATH  Google Scholar 

  14. Narasimham G (2010) Natural convection from discrete heat sources in enclosures: an overview. VIVECHAN Int J Res 1:63–78

    Google Scholar 

  15. Sudhakar T, Balaji C, Venkateshan S (2010) A heuristic approach to optimal arrangement of multiple heat sources under conjugate natural convection. Int J Heat Mass Transf 53(1–3):431–444

    Article  MATH  Google Scholar 

  16. Sudhakar T, Shori A, Balaji C, Venkateshan S (2010) Optimal heat distribution among discrete protruding heat sources in a vertical duct: a combined numerical and experimental study. J Heat Transfer 132:011401

    Article  Google Scholar 

  17. Wang Z, Mayinger F (1991) Natural convection heat transfer in the PCB’s array of electronic equipments. In: Sunden B (ed) Proceedings of the 1st Baltic heat transfer conference, Goteborg, Sweden, Aug 26–28, 1991. Goteborg: Chalmers University of Tech, S. 841-854, (zus. mit Z. Wang)

  18. Yang L, Leung C, Chang T, Phan-Thuen N (2000) An optimal spacing problem for five chips on a horizontal substrate in an enclosure–natural convection. Int J Comput Eng Sci 1:167–186

    Article  Google Scholar 

  19. Sabareesh R, Prasanna S, Venkateshan S (2010) Investigations on multimode heat transfer from a heated vertical plate. J Heat Transfer 132:032501

    Article  Google Scholar 

  20. http://www.engr.uky.edu/rtl/Catalog/sectionc/C-13.html

  21. Venkateshan SP (2004) First course in heat transfer. Ane Books, New Delhi

    Google Scholar 

  22. Venkateshan SP (2008) Mechanical measurements. Ane Books, New Delhi

    Google Scholar 

  23. Kessel W (2002) Measurement uncertainty according to ISO/BIPM-GUM. Thermochimica Acta 382(1):1–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Venkateshan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hotta, T.K., Muvvala, P. & Venkateshan, S.P. Effect of surface radiation heat transfer on the optimal distribution of discrete heat sources under natural convection. Heat Mass Transfer 49, 207–217 (2013). https://doi.org/10.1007/s00231-012-1072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1072-0

Keywords

Navigation