Skip to main content
Log in

On Chow stability for algebraic curves

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In the last decades there have been introduced different concepts of stability for projective varieties. In this paper we give a natural and intrinsic criterion for the Chow and Hilbert stability for complex irreducible smooth projective curves \(C\subset {\mathbb {P}} ^n\). Namely, if the restriction of the tangent bundle of \({\mathbb {P}} ^n\) to C is stable then \(C\subset {\mathbb {P}} ^n\) is Chow stable, and hence Hilbert stable. We apply this criterion to describe a smooth open set of a regular component of the locus of Chow stable curves of the Hilbert scheme of \(\mathbb {P} ^n\) with Hilbert polynomial \(P(t)=dt+(1-g)\), when \(g\ge 4\) and \(d>g+n-\left\lfloor \frac{g}{n+1}\right\rfloor .\) Moreover, we describe the quotient stack of such curves. Similar results are obtained for the locus of Hilbert stable curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, V.: Higher-dimensional analogues of stable curves. In: Sanz, M., Soria, J., Varona, J., Verdera, J. (eds.) Algebraic and Complex Geometry, pp. 515–536. Soc. Publ. House, Proceedings of Madrid ICM, European Math (2006)

    Google Scholar 

  2. Alper, J., Hyeon, D.: GIT construction of log canonical models of \(\bar{M_g}\). In: Alexeev, V., Gibney, A., Izadi, E., Kollár, J., Looijenga, E. (eds.) Compact Moduli Spaces and Vector Bundles. Contemporary Mathematicas, vol. 564, pp. 87–106. American Mathematics Society, Providence RI (2012)

    Chapter  Google Scholar 

  3. Arbarello, E., Cornalba, M., Griffiths, P.A.: Geometry of Algebraic Curves, with a Contribution by Joseph Daniel Harris. Vol. II, Volume 268 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg (2011)

  4. Barja, M.A., Stoppino, L.: Stability conditions and positivity of invariants of fibrations. In: Frübis-Krüger, A., Nanne, R., Schütt, M. (eds.) Algebraic and Complex Geometry, in Honour of Klaus Huleks 60th Birthday, vol. 71, pp. 1–40. Springer Proc. Math. Stat. (2014)

  5. Berman, J.: K-polystability of Q-Fano varieties admitting Kahler–Einstein metrics. Invent. Math. 203(3), 973–1025 (2015). doi:10.1007/s00222-015-0607-7

  6. Bhosle, U.N., Brambila-Paz, L., Newstead, P.E.: On coherent systems of type \((n, d, n + 1)\) on Petri curves. Manuscr. Math. 126, 409–441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhosle, U.N., Brambila-Paz, L., Newstead, P.E.: On linear series and a conjecture of DC Butler. Int. J. Math. 26(2), 1550007 (2015). doi:10.1142/S0129167X1550007X

    Article  MathSciNet  MATH  Google Scholar 

  8. Bini, G., Felici, F., Melo, M., Viviani, F.: GIT for polarized curves. In: Lecture Notes in Mathematics, 2122. Springer, Berlin (2014)

  9. Brambila-Paz, L.: Non-emptiness of moduli spaces of coherent systems. Int. J. Math. 19(7), 779–799 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brambila-Paz, L., Ortega, A.: Brill–Noether bundles and coherent systems on special curves. In: Brambila-Paz, L., Steven, B., Garcia-Prada, O., Ramanan, S. (eds.) Moduli Spaces and Vector Bundles. LMS Lecture Note Series 359, pp. 456–472. Cambridge University Press, Cambridge (2009)

  11. Butler, D.C.: Normal generation of vector bundles over a curve. J. Differ. Geom. 39(1), 1–34 (1994)

    MathSciNet  MATH  Google Scholar 

  12. Butler, D.C.: Birational maps of moduli of Brill–Noether pairs. Preprint arXiv:alg-geom/9705009

  13. Camere, C.: About the stability of the tangent bundle of \({\mathbb{P}} ^n\) restricted to a curve. C. R. Math. Acad. Sci. Paris Ser I 346, 421–426 (2008)

  14. Chen, X.-X., Donaldson, S., Sun, S.: Kähler-Einstein metrics and stability. Int. Math. Res. Not. IMRN 8, 2119–2125 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Ein, L., Lazarsfeld, R.: Stability and restrictions of Picard bundles, with an application to thenormal bundles of elliptic curves. In: Ellingsrud, G., Peskine, C., Sacchiero, G., Stromme, S.A. (eds.) Complex Projective Geometry (Trieste 1989/Bergen 1989). LMS Lecture Note Series, vol. 179, pp. 149–156. Cambridge University Press, Cambridge (1992)

    Chapter  Google Scholar 

  16. Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S.L., Nitsure, N., Vistolli, A.: Fundametal Algebraic Geometry: Grothendieck’s FGA Explained. Mathematical Surveys and Monographs, AMS 123, (2005)

  17. Gieseker, D.: Lectures on Moduli of Curves. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Volume 69, Bombay (1982)

  18. Grothendieck, A.: Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): III. Étude cohomologique des faisceaux cohérents, Premiére partie. Publications Mathematiques de l’IHÉS 11, 5–167 (1961)

  19. Harris, J., Morrison, I.: Moduli of curves. In: Graduate Texts in Mathematics, vol. 187 (1998)

  20. Hassett, B., Hyeon, D.: Log minimal model program for the moduli space of curves: the first flip. Ann. Math. (2) 177(3), 911–968 (2013)

  21. Kollär, J.: Moduli of varieties of general type. In: Handbook of Moduli. Adv. Lect. Math. (ALM), 25, Vol. II, pp. 131–157. Int. Press, Somerville (2013)

  22. Lange, H., Newstead, P.E.: Coherent systems on elliptic curves. Int. J. Math. 16, 787–805 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mabuchi, T.: Chow-stability and Hilbert-stability in Mumford’s geometric invariant theory. Osaka J. Math. 45, 833–846 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Mistretta, E.C.: Stability of line bundle transforms on curves with respect to low codimensional subspaces. J. Lond. Math. Soc. (2) 78(1), 172–182 (2008)

  25. Mistretta, E.C., Stoppino, L.: Linear series on curves: stability and Clifford index. Int. J. Math. 23(12) (2012). doi:10.1142/0129167X12501212

  26. Morrison, I.: Projective stability of ruled surfaces. Invent. Math. 56, 269–304 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mumford, D.: Stability of projective varieties. Enseign. Math. 2(23), 39–110 (1977)

    MathSciNet  MATH  Google Scholar 

  28. Odaka, Y.: On the GIT stability of polarized varieties a survey. In: Proceedings of Kinosaki Algebraic Geometry symposium (2010)

  29. Paranjape, K., Ramanan, S.: On the canonical ring of a curve. In: Algebraic Geometry and Commutative Algebra, in Honor of Masayoshi Nagata, vol. 2, pp. 503–516, Kinokuniya (1987)

  30. Ross, J., Thomas, R.: A study of the Hilbert Mumford criterion for the stability of projective varieties. J. Algebr. Geom. 16, 201–255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schneider, O.: Stabilité des fibrés \(\wedge ^p E_L\) et condition de Raynaud. Fac. Sci. Toulouse Math. (6) 14(3), 515–525 (2005)

  32. Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–39 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brambila-Paz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brambila-Paz, L., Torres-López, H. On Chow stability for algebraic curves. manuscripta math. 151, 289–304 (2016). https://doi.org/10.1007/s00229-016-0843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-016-0843-1

Mathematics Subject Classification

Navigation