Skip to main content
Log in

Gradient estimates and the fundamental solution for higher-order elliptic systems with rough coefficients

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

This paper considers the theory of higher-order divergence-form elliptic differential equations. In particular, we provide new generalizations of several well-known tools from the theory of second-order equations. These tools are the Caccioppoli inequality, Meyers’s reverse Hölder inequality for gradients, and the fundamental solution. Our construction of the fundamental solution may also be of interest in the theory of second-order operators, as we impose no regularity assumptions on our elliptic operator beyond ellipticity and boundedness of coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agranovich, M.S.: On the theory of Dirichlet and Neumann problems for linear strongly elliptic systems with Lipschitz domains. Funktsional. Anal. i Prilozhen. 41(4), 1–21, 96 (2007). doi:10.1007/s10688-007-0023-x. English translation: Funct. Anal. Appl. 41(4), 247–263 (2007)

  3. Auscher, P., Hofmann, S., McIntosh, A., Tchamitchian, P.: The Kato square root problem for higher order elliptic operators and systems on \({\mathbb{R}}^n\). J. Evol. Equ. 1(4), 361–385 (2001). doi:10.1007/PL00001377. Dedicated to the memory of Tosio Kato

    Article  MathSciNet  MATH  Google Scholar 

  4. Auscher, P., McIntosh, A., Tchamitchian, P.: Heat kernels of second order complex elliptic operators and applications. J. Funct. Anal. 152(1), 22–73 (1998). doi:10.1006/jfan.1997.3156

    Article  MathSciNet  MATH  Google Scholar 

  5. Auscher, P., Qafsaoui, M.: Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form. J. Funct. Anal. 177(2), 310–364 (2000). doi:10.1006/jfan.2000.3643

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)

  7. Barton, A., Hofmann, S., Mayboroda, S.: Square function estimates on layer potentials for higher-order elliptic equations. ArXiv e-prints (2015). arXiv:1508.04988 [math.AP]

  8. Barton, A., Mayboroda, S.: Higher-order elliptic equations in non-smooth domains: a partial survey. In: Harmonic analysis, partial differential equations, complex analysis, banach spaces, andoperator theory. Celebrating Cora Sadosky’s life, vol. 1. AWM-Springer (2016) (To appear)

  9. Campanato, S.: Sistemi ellittici in forma divergenza. Regolarità all’interno. Quaderni. [Publications]. Scuola Normale Superiore Pisa, Pisa (1980)

  10. Cho, S., Dong, H., Kim, S.: Global estimates for Green’s matrix of second order parabolic systems with application to elliptic systems in two dimensional domains. Potential Anal. 36(2), 339–372 (2012). doi:10.1007/s11118-011-9234-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, J., Gosselin, J.: Adjoint boundary value problems for the biharmonic equation on \(C^1\) domains in the plane. Ark. Mat. 23(2), 217–240 (1985). doi:10.1007/BF02384427

    Article  MathSciNet  MATH  Google Scholar 

  12. Dalla Riva, M.: A family of fundamental solutions of elliptic partial differential operators with real constant coefficients. Integral Equ. Oper. Theory 76(1), 1–23 (2013). doi:10.1007/s00020-013-2052-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Dalla Riva, M., Morais, J., Musolino, P.: A family of fundamental solutions of elliptic partial differential operators with quaternion constant coefficients. Math. Methods Appl. Sci. 36(12), 1569–1582 (2013). doi:10.1002/mma.2706

    Article  MathSciNet  MATH  Google Scholar 

  14. Dolzmann, G., Müller, S.: Estimates for Green’s matrices of elliptic systems by \(L^p\) theory. Manuscr. Math. 88(2), 261–273 (1995). doi:10.1007/BF02567822

    Article  MATH  Google Scholar 

  15. Dong, H., Kim, S.: Green’s matrices of second order elliptic systems with measurable coefficients in two dimensional domains. Trans. Am. Math. Soc. 361(6), 3303–3323 (2009). doi:10.1090/S0002-9947-09-04805-3

    Article  MathSciNet  MATH  Google Scholar 

  16. Duduchava, R.: The Green formula and layer potentials. Integral Equ. Oper. Theory 41(2), 127–178 (2001). doi:10.1007/BF01295303

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans, L.C.: Partial differential equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (1998)

    Google Scholar 

  18. Fefferman, C., Stein, E.M.: \(H^{p}\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frehse, J.: An irregular complex valued solution to a scalar uniformly elliptic equation. Calc. Var. Partial Differ. Equ. 33(3), 263–266 (2008). doi:10.1007/s00526-007-0131-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedman, A.: On fundamental solutions of elliptic equations. Proc. Am. Math. Soc. 12, 533–537 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fuchs, M.: The Green matrix for strongly elliptic systems of second order with continuous coefficients. Z. Anal. Anwendungen 5(6), 507–531 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton, NJ (1983)

    MATH  Google Scholar 

  23. Grüter, M., Widman, K.O.: The Green function for uniformly elliptic equations. Manuscr. Math. 37(3), 303–342 (1982). doi:10.1007/BF01166225

    Article  MathSciNet  MATH  Google Scholar 

  24. Hofmann, S., Kim, S.: The Green function estimates for strongly elliptic systems of second order. Manuscr. Math. 124(2), 139–172 (2007). doi:10.1007/s00229-007-0107-1

    Article  MathSciNet  MATH  Google Scholar 

  25. John, F.: Plane waves and spherical means applied to partial differential equations. Interscience Publishers, New York-London (1955)

    MATH  Google Scholar 

  26. Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147(1–2), 71–88 (1981). doi:10.1007/BF02392869

    Article  MathSciNet  MATH  Google Scholar 

  27. Kang, K., Kim, S.: Global pointwise estimates for Green’s matrix of second order elliptic systems. J. Differ. Equ. 249(11), 2643–2662 (2010). doi:10.1016/j.jde.2010.05.017

    Article  MathSciNet  MATH  Google Scholar 

  28. Kenig, C.E., Ni, W.M.: On the elliptic equation \(Lu-k+K\,{\rm exp}[2u]=0\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12(2), 191–224 (1985). http://www.numdam.org/item?id=ASNSP_1985_4_12_2_191_0

  29. Littman, W., Stampacchia, G., Weinberger, H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa 3(17), 43–77 (1963)

    MathSciNet  MATH  Google Scholar 

  30. Mayboroda, S., Maz’ya, V.: Boundedness of the Hessian of a biharmonic function in a convex domain. Commun. Partial Differ. Equ. 33(7–9), 1439–1454 (2008). doi:10.1080/03605300801891919

    Article  MathSciNet  MATH  Google Scholar 

  31. Mayboroda, S., Maz’ya, V.: Pointwise estimates for the polyharmonic Green function in general domains. In: Analysis, partial differential equations and applications, Oper. Theory Adv. Appl., vol. 193, pp. 143–158. Birkhäuser Verlag, Basel (2009)

  32. Maz’ya, V.: The Wiener test for higher order elliptic equations. Duke Math. J. 115(3), 479–512 (2002). doi:10.1215/S0012-7094-02-11533-6

    Article  MathSciNet  MATH  Google Scholar 

  33. Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients. J. Anal. Math. 110, 167–239 (2010). doi:10.1007/s11854-010-0005-4

    Article  MathSciNet  MATH  Google Scholar 

  34. Meyers, N.G.: An \(L^{p}\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 3(17), 189–206 (1963)

    MathSciNet  MATH  Google Scholar 

  35. Mitrea, I., Mitrea, M.: Multi-layer potentials and boundary problems for higher-order elliptic systems in Lipschitz domains. Lecture Notes in Mathematics, Vol. 2063. Springer, Heidelberg (2013)

  36. Morrey Jr., C.B.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer, New York Inc., New York (1966)

  37. Moser, J.: On Harnack’s theorem for elliptic differential equations. Commun. Pure Appl. Math. 14, 577–591 (1961)

    Article  MATH  Google Scholar 

  38. Ortner, N., Wagner, P.: A survey on explicit representation formulae for fundamental solutions of linear partial differential operators. Acta Appl. Math. 47(1), 101–124 (1997). doi:10.1023/A:1005784017770

    Article  MathSciNet  MATH  Google Scholar 

  39. Pipher, J., Verchota, G.C.: Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators. Ann. Math. 142(1), 1–38 (1995). doi:10.2307/2118610

    Article  MathSciNet  MATH  Google Scholar 

  40. Rosén, A.: Layer potentials beyond singular integral operators. Publ. Mat. 57(2), 429–454 (2013). doi:10.5565/PUBLMAT_57213_08

    Article  MathSciNet  MATH  Google Scholar 

  41. Verchota, G.C.: Potentials for the Dirichlet problem in Lipschitz domains. In: Potential theory—ICPT 94 (Kouty, 1994), pp. 167–187. de Gruyter, Berlin (1996)

  42. Verchota, G.C.: The biharmonic Neumann problem in Lipschitz domains. Acta Math. 194(2), 217–279 (2005). doi:10.1007/BF02393222

    Article  MathSciNet  MATH  Google Scholar 

  43. Verchota, G.C.: Boundary coerciveness and the Neumann problem for 4th order linear partial differential operators. In: Around the research of Vladimir Maz’ya. II, Int. Math. Ser. (N.Y.), Vol. 12, pp. 365–378. Springer, New York (2010). doi:10.1007/978-1-4419-1343-2_17

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Barton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, A. Gradient estimates and the fundamental solution for higher-order elliptic systems with rough coefficients. manuscripta math. 151, 375–418 (2016). https://doi.org/10.1007/s00229-016-0839-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-016-0839-x

Mathematics Subject Classification

Navigation