Skip to main content
Log in

Canonical key formula for projective abelian schemes

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we prove a refined version of the canonical key formula for projective abelian schemes in the sense of Moret-Bailly (cf. Astérisque 129, 1985), we also extend this discussion to the context of Arakelov geometry. Precisely, let \({\pi: A \to S}\) be a projective abelian scheme over a locally noetherian scheme S with unit section \({e: S \to A}\) and let L be a symmetric, rigidified, relatively ample line bundle on A. Denote by ω A the determinant of the sheaf of differentials of π and by d the rank of the locally free sheaf π* L. In this paper, we shall prove the following results: (i). there is an isomorphism

$${\rm det}(\pi_*L)^{\otimes 24} \cong (e^*\omega_A^\vee)^{\otimes 12d}$$

which is canonical in the sense that it can be chosen to be functorial, namely it is compatible with arbitrary base-change; (ii). if the generic fibre of S is separated and smooth, then there exist a positive integer m and canonical metrics on L and on ω A such that there exists an isometry

$${\rm det}(\pi_*\overline{L})^{\otimes 2m} \cong (e^*\overline{\omega}_A^\vee)^{\otimes md}$$

which is canonical in the sense of (i). Here the constant m only depends on g, d and is independent of L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berline N., Getzler E., Vergne M.: Heat Kernels and the Dirac Operator, Grundlehren der Math., Wiss. 298. Springer, Berlin (1992)

    Book  Google Scholar 

  2. Bismut J.-M., Koehler K.: Higher analytic torsion and anomaly formulas. J. Algebraic Geom. 1, 647–684 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Burgos Gil, J.I., Freixas i Montplet, G., Liţcanu, R.: Generalized holomorphic analytic torsion. J. Eur. Math. Soc. (JEMS) 16(3), 463–535 (2014)

    Google Scholar 

  4. Chai C.-L.: Siegel Moduli Schemes and Their Compactifications over \({\mathbb{C}}\), Arithmetic Geometry (Storrs, Conn., 1984), pp. 231–251. Springer, New York (1986)

    Google Scholar 

  5. Chai C.-L.: Compactification of Siegel Moduli Schemes, London Mathematical Society Lecture Note Series, vol. 107. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  6. Faltings G., Chai C.-L.: Degeneration of Abelian Varieties, with an Appendix by David Mumford, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 22. Springer, Berlin (1990)

    Google Scholar 

  7. Freitag E., Kiehl R.: Étale Cohomology and the Weil Conjecture, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 13. Springer, Berlin (1988)

  8. Fundamental algebraic geometry, Math. Surveys Monogr., 123. American Mathematical Society, Providence, RI (2005)

  9. Gillet, H., Soulé, C.: Characteristic classes for algebraic vector bundles with hermitian metrics I, II, Ann. Math. 131, 163–203 and 205–238 (1990)

    Google Scholar 

  10. Gillet H., Soulé C.: An arithmetic Riemann–Roch theorem. Invent. Math. 110, 473–543 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grothendieck A., Berthelot P., Illusie L.: SGA6, Théorie des Intersections et Théorème de Riemann–Roch, Lecture Notes in Maththematics 225. Springer, Berlin (1971)

    Google Scholar 

  12. Hartshorne R.: Algebraic Geometry, Graduate Texts in Mathematics 52. Springer, New York (1977)

    Google Scholar 

  13. Köck, B.: The Grothendieck–Riemann–Roch theorem for group scheme actions, Ann. Sci. Ecole Norm. Sup. 31, 4ème série, 415–458 (1998)

    Google Scholar 

  14. Ma X.: Formes de torsion analytique et familles de submersions I. Bull. Soc. Math. France 127, 541–562 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Maillot V., Rössler D.: On the determinant bundles of abelian schemes. Compositio Math. 144, 495–502 (2008)

    Article  MATH  Google Scholar 

  16. Milne J.S.:Étale Cohomology, Princeton Mathematical Series, vol. 33. Princeton University Press, New Jersey (1980)

  17. Moret-Bailly, L.: Pinceaux de variéeés abéliennes, Astérisque 129 (1985)

  18. Moret-Bailly L.: Sur l’équation fonctionnelle de la fonction thêta de Riemann. Compositio Math. 75, 203–217 (1990)

    MathSciNet  MATH  Google Scholar 

  19. Mumford D.: Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Oxford University Press, London (1970)

    Google Scholar 

  20. Mumford D., Fogarty J., Kirwan F.: Geometric Invariant Theory, Third Edition, Ergebnisse der Mathematik und Ihrer Grenzgebiete (2), vol. 34. Springer, Berlin (1994)

    Google Scholar 

  21. Polishchuk A.: Determinant bundles for abelian schemes. Compositio Math. 121, 221–245 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rapoport M., Schappacher N., Schneider P.: Beilinson’s Conjectures on Special Values of L-functions, Perspect. Math. 4. Academic Press, Boston (1988)

    Google Scholar 

  23. Raynaud M.: Spécilisation du foncteur de Picard. Inst. Hautes Études Sci. Publ. Math. 38, 27–76 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Roessler D.: An Adams–Riemann–Roch theorem in Arakelov geometry. Duke Math. J. 96(1), 61–126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Roessler D.: Lambda structure on arithmetic Grothendieck groups. Israel J. Math. 122, 279–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Soulé C.: Lectures on Arakelov Geometry, Cambridge Stud. Adv. Math. 33. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  27. Vistoli A.: Grothendieck Topologies, Fibred Categories and Descent Theory, Fundamental Algebraic Geometry, 1–104, Math. Surveys Monogr., 123. American Mathematical Society, Providence, RI (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Tang.

Additional information

Research of the author was supported in part by NSFC (No. 11301352).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, S. Canonical key formula for projective abelian schemes. manuscripta math. 145, 255–284 (2014). https://doi.org/10.1007/s00229-014-0674-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0674-x

Mathematics Subject Classification

Navigation