Skip to main content

Advertisement

Log in

Impact of prior chronic statin therapy and high-intensity statin therapy at discharge on circulating endothelial progenitor cell levels in patients with acute myocardial infarction: a prospective observational study

  • Pharmacodynamics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Endothelial progenitor stem cells (EPCs) are mobilized to the peripheral circulation in response to myocardial ischemia, playing a crucial role in vascular repair. Statins have been shown to stimulate EPCs. However, neither the impact of previous statin therapy on EPC response of acute myocardial infarction (AMI) patients nor the effect of post-AMI high-intensity statin therapy on the evolution of circulating EPC levels has yet been addressed. Therefore, we aimed to compare circulating EPC levels between patients receiving long-term statin therapy before the AMI and statin-naive patients and to assess the impact of high-intensity statin therapy at discharge on the evolution of circulating EPCs post-AMI.

Methods

This is a prospective observational study of 100 AMI patients. Circulating EPCs (CD45dimCD34 + KDR + cells) and their subpopulation coexpressing the homing marker CXCR4 were quantified by the high-performance flow cytometer FACSCanto II in whole blood, in two different moments: within the first 24 h of admission and 3 months post-AMI. Patients were followed up clinically for 2 years.

Results

Patients previously treated with statins had significantly higher levels of EPCs coexpressing CXCR4 (1.9 ± 1.4 vs. 1.3 ± 1.0 cells/1,000,000 events, p = 0.031) than statin-naive patients. In addition, the subanalysis of diabetics (N = 38) also revealed that patients previously on statins had significantly greater numbers of both CD45dimCD34 + KDR + CXCR4+ cells (p = 0.024) and CD45dimCD34 + KDR + CD133+ cells (p = 0.022) than statin-naive patients. Regarding the evolution of EPC levels after the AMI, patients not on a high-intensity statin therapy at discharge had a significant reduction of CD45dimCD34 + KDR + and CD45dimCD34 + KDR + CXCR4+ cells from baseline to 3 months follow-up (p = 0.031 and p = 0.005, respectively). However, patients discharged on a high-intensity statin therapy maintained circulating levels of all EPC populations, presenting at 3 months of follow-up significantly higher EPC levels than patients not on an intensive statin therapy. Moreover, the high-intensity statin treatment group had significantly better clinical outcomes during the 2-year follow-up period than patients not discharged on a high-intensity statin therapy.

Conclusion

Chronic statin therapy prior to an AMI strongly enhances the response of EPCs to myocardial ischemia, even in diabetic patients. Furthermore, high-intensity statin therapy after an AMI prevents the expected decrease of circulating EPC levels during follow-up. These results reinforce the importance of an early and intensive statin therapy in AMI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  2. Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol 23:1185–1189

    Article  CAS  PubMed  Google Scholar 

  3. Kong D, Melo LG, Gnecchi M, Zhang L, Mostoslavsky G, Liew CC, Pratt RE, Dzau VJ (2004) Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 110:2039–2046

    Article  CAS  PubMed  Google Scholar 

  4. Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R, De Ferrari GM, Ferlini M, Goffredo L, Bertoletti A, Klersy C, Pecci A, Moratti R, Tavazzi L (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105:199–206

    Article  CAS  PubMed  Google Scholar 

  5. Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N (2006) CD34−/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res 98:e20–e25

    Article  CAS  PubMed  Google Scholar 

  6. Numaguchi Y, Sone T, Okumura K, Ishii M, Morita Y, Kubota R, Yokouchi K, Imai H, Harada M, Osanai H, Kondo T, Murohara T (2006) The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 114:I114–I119

    Article  PubMed  Google Scholar 

  7. Ling L, Shen Y, Wang K, Jiang C, Fang C, Ferro A, Kang L, Xu B (2012) Worse clinical outcomes in acute myocardial infarction patients with type 2 diabetes mellitus: relevance to impaired endothelial progenitor cells mobilization. PLoS ONE 7:e50739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Smith MEB, Lee NJ, Haney E, Carson S (2009) Drug class review: HMG-CoA reductase inhibitors (statins) and fixed-dose combination products containing a statin: final report update 5. Health and Science University, Portland

    Google Scholar 

  9. Pignone M, Phillips C, Mulrow C (2000) Use of lipid lowering drugs for primary prevention of coronary heart disease: meta-analysis of randomised trials. BMJ 321:983–986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Fletcher GF, Bufalino V, Costa F, Goldstein LB, Jones D, Smaha L, Smith SC Jr, Stone N (2007) Efficacy of drug therapy in the secondary prevention of cardiovascular disease and stroke. Am J Cardiol 99:1E–35E

    Article  CAS  PubMed  Google Scholar 

  11. Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM, Dimmeler S (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103:2885–2890

    Article  CAS  PubMed  Google Scholar 

  12. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, Walsh K, Isner JM, Asahara T (2001) HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Investig 108:399–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Assmus B, Urbich C, Aicher A, Hofmann WK, Haendeler J, Rossig L, Spyridopoulos I, Zeiher AM, Dimmeler S (2003) HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 92:1049–1055

    Article  CAS  PubMed  Google Scholar 

  14. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278

    Article  CAS  PubMed  Google Scholar 

  15. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM (2004) Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350:1495–1504

    Article  CAS  PubMed  Google Scholar 

  16. Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, Borger MA, Di Mario C, Dickstein K, Ducrocq G, Fernandez-Aviles F, Gershlick AH, Giannuzzi P, Halvorsen S, Huber K, Juni P, Kastrati A, Knuuti J, Lenzen MJ, Mahaffey KW, Valgimigli M, van’t Hof A, Widimsky P, Zahger D (2012) ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33:2569–2619

    Article  CAS  PubMed  Google Scholar 

  17. Ryden L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C, Escaned J, Hammes HP, Huikuri H, Marre M, Marx N, Mellbin L, Ostergren J, Patrono C, Seferovic P, Uva MS, Taskinen MR, Tendera M, Tuomilehto J, Valensi P, Zamorano JL, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, De Backer G, Sirnes PA, Ezquerra EA, Avogaro A, Badimon L, Baranova E, Baumgartner H, Betteridge J, Ceriello A, Fagard R, Funck-Brentano C, Gulba DC, Hasdai D, Hoes AW, Kjekshus JK, Knuuti J, Kolh P, Lev E, Mueller C, Neyses L, Nilsson PM, Perk J, Ponikowski P, Reiner Z, Sattar N, Schachinger V, Scheen A, Schirmer H, Stromberg A, Sudzhaeva S, Tamargo JL, Viigimaa M, Vlachopoulos C, Xuereb RG (2013) ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on Diabetes, Pre-diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (ESCD). Eur Heart J 34:3035–3087

    Article  PubMed  Google Scholar 

  18. American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90

    Article  Google Scholar 

  19. Antonio N, Soares A, Carvalheiro T, Fernandes R, Paiva A, Ventura M, Cristovao J, Elvas L, Goncalves L, Providencia LA, Fontes Ribeiro C, Mariano Pego G (2014) Circulating endothelial progenitor cells as a predictor of response to cardiac resynchronization therapy: the missing piece of the puzzle? Pacing Clin Electrophysiol 37(6):731–739

    Article  PubMed  Google Scholar 

  20. Schmidt-Lucke C, Fichtlscherer S, Aicher A, Tschope C, Schultheiss HP, Zeiher AM, Dimmeler S (2010) Quantification of circulating endothelial progenitor cells using the modified Ishage protocol. PLoS ONE 5:e13790

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ingram DA, Caplice NM, Yoder MC (2005) Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106:1525–1531

    Article  CAS  PubMed  Google Scholar 

  22. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91:4523–4530

    CAS  PubMed  Google Scholar 

  23. Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I (1996) The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 5:213–226

    Article  CAS  PubMed  Google Scholar 

  24. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  25. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  26. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Investig 107:1395–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  CAS  PubMed  Google Scholar 

  28. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15

    Article  PubMed  Google Scholar 

  29. Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32

    Article  CAS  PubMed  Google Scholar 

  30. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    Article  CAS  PubMed  Google Scholar 

  31. Tepper OM, Capla JM, Galiano RD, Ceradini DJ, Callaghan MJ, Kleinman ME, Gurtner GC (2005) Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105:1068–1077

    Article  CAS  PubMed  Google Scholar 

  32. Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342:626–633

    Article  CAS  PubMed  Google Scholar 

  33. Moore MA, Hattori K, Heissig B, Shieh JH, Dias S, Crystal RG, Rafii S (2001) Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann N Y Acad Sci 938:36–45, discussion 45–37

    Article  CAS  PubMed  Google Scholar 

  34. Masuda H, Asahara T (2003) Post-natal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc Res 58:390–398

    Article  CAS  PubMed  Google Scholar 

  35. Shiba Y, Takahashi M, Yoshioka T, Yajima N, Morimoto H, Izawa A, Ise H, Hatake K, Motoyoshi K, Ikeda U (2007) M-CSF accelerates neointimal formation in the early phase after vascular injury in mice: the critical role of the SDF-1-CXCR4 system. Arterioscler Thromb Vasc Biol 27:283–289

    Article  CAS  PubMed  Google Scholar 

  36. Walter DH, Rochwalsky U, Reinhold J, Seeger F, Aicher A, Urbich C, Spyridopoulos I, Chun J, Brinkmann V, Keul P, Levkau B, Zeiher AM, Dimmeler S, Haendeler J (2007) Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 27:275–282

    Article  CAS  PubMed  Google Scholar 

  37. Kimura T, Boehmler AM, Seitz G, Kuci S, Wiesner T, Brinkmann V, Kanz L, Mohle R (2004) The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood 103:4478–4486

    Article  CAS  PubMed  Google Scholar 

  38. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Egan CG, Lavery R, Caporali F, Fondelli C, Laghi-Pasini F, Dotta F, Sorrentino V (2008) Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes. Diabetologia 51:1296–1305

    Article  CAS  PubMed  Google Scholar 

  40. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786

    Article  PubMed  Google Scholar 

  41. Nesto R (2004) C-reactive protein, its role in inflammation, type 2 diabetes and cardiovascular disease, and the effects of insulin-sensitizing treatment with thiazolidinediones. Diabet Med 21:810–817

    Article  CAS  PubMed  Google Scholar 

  42. Verma S, Kuliszewski MA, Li SH, Szmitko PE, Zucco L, Wang CH, Badiwala MV, Mickle DA, Weisel RD, Fedak PW, Stewart DJ, Kutryk MJ (2004) C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation 109:2058–2067

    Article  CAS  PubMed  Google Scholar 

  43. Chen J, Jin J, Song M, Dong H, Zhao G, Huang L (2012) C-reactive protein down-regulates endothelial nitric oxide synthase expression and promotes apoptosis in endothelial progenitor cells through receptor for advanced glycation end-products. Gene 496:128–135

    Article  CAS  PubMed  Google Scholar 

  44. Davignon J (2004) Beneficial cardiovascular pleiotropic effects of statins. Circulation 109:III39–III43

    PubMed  Google Scholar 

  45. Ridker PM, Rifai N, Pfeffer MA, Sacks FM, Moye LA, Goldman S, Flaker GC, Braunwald E (1998) Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and recurrent events (CARE) investigators. Circulation 98:839–844

    Article  CAS  PubMed  Google Scholar 

  46. Ridker PM, Rifai N, Pfeffer MA, Sacks F, Braunwald E (1999) Long-term effects of pravastatin on plasma concentration of C-reactive protein. The cholesterol and recurrent events (CARE) investigators. Circulation 100:230–235

    Article  CAS  PubMed  Google Scholar 

  47. Albert MA, Danielson E, Rifai N, Ridker PM (2001) Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA 286:64–70

    Article  CAS  PubMed  Google Scholar 

  48. Leone AM, Rutella S, Giannico MB, Perfetti M, Zaccone V, Brugaletta S, Garramone B, Niccoli G, Porto I, Liuzzo G, Biasucci LM, Bellesi S, Galiuto L, Leone G, Rebuzzi AG, Crea F (2008) Effect of intensive vs standard statin therapy on endothelial progenitor cells and left ventricular function in patients with acute myocardial infarction: statins for regeneration after acute myocardial infarction and PCI (STRAP) trial. Int J Cardiol 130:457–462

    Article  PubMed  Google Scholar 

  49. Satoh M, Minami Y, Takahashi Y, Tabuchi T, Itoh T, Nakamura M (2009) Effect of intensive lipid-lowering therapy on telomere erosion in endothelial progenitor cells obtained from patients with coronary artery disease. Clin Sci (Lond) 116:827–835

    Article  CAS  Google Scholar 

  50. Javed U, Deedwania PC, Bhatt DL, Cannon CP, Dai D, Hernandez AF, Peterson ED, Fonarow GC (2010) Use of intensive lipid-lowering therapy in patients hospitalized with acute coronary syndrome: an analysis of 65,396 hospitalizations from 344 hospitals participating in get with the guidelines (GWTG). Am Heart J 160:1130–1136

    Article  CAS  PubMed  Google Scholar 

  51. Abdallah MS, Kosiborod M, Tang F, Karrowni WY, Maddox TM, McGuire DK, Spertus JA, Arnold SV (2014) Patterns and predictors of intensive statin therapy among patients with diabetes mellitus after acute myocardial infarction. Am J Cardiol 113:1267–1272

    Article  PubMed  Google Scholar 

  52. Ferrieres J, Bataille V, Leclercq F, Geslin P, Ruidavets JB, Grollier G, Bernard P, Cambou JP, Simon T, Danchin N (2009) Patterns of statin prescription in acute myocardial infarction: the French registry of acute ST-elevation or non-ST-elevation myocardial infarction (FAST-MI). Atherosclerosis 204:491–496

    Article  CAS  PubMed  Google Scholar 

  53. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by unrestricted research grants from “Pfizer, Inc”, Portuguese Society of Cardiology, Foundation for Science and Technology (PEst-C/SAU/UI3282/2011 and COMPETE), and Faculty of Medicine of the University of Coimbra (Programa de Estímulo à Investigação).

Conflict of interest

The authors declare that they have no competing interests. The sponsors had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natália António.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

António, N., Fernandes, R., Soares, A. et al. Impact of prior chronic statin therapy and high-intensity statin therapy at discharge on circulating endothelial progenitor cell levels in patients with acute myocardial infarction: a prospective observational study. Eur J Clin Pharmacol 70, 1181–1193 (2014). https://doi.org/10.1007/s00228-014-1718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-014-1718-6

Keywords

Navigation