Skip to main content

Advertisement

Log in

Rate of onset of inhibition of gut-wall and hepatic CYP3A by clarithromycin

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Aims

To determine the extent and time-course of hepatic and intestinal cytochrome P450 3A (CYP3A) inactivation due to the mechanism-based inhibitor clarithromycin.

Methods

Intestinal and hepatic CYP3A inhibition was examined in 12 healthy volunteers following the administration of single and multiple doses of oral clarithromycin (500 mg). Intestinal biopsies were obtained under intravenous midazolam sedation at baseline and after the first dose, on days 2–4, and on days 6–8 of the clarithromycin treatment. The formation of 1′-hydroxymidazolam in biopsy tissue and the serum 1′-hydroxymidazolam:midazolam ratio were indicators of intestinal and hepatic CYP3A activity, respectively.

Results

Intestinal CYP3A activity decreased by 64 % (p = 0.0029) following the first dose of clarithromycin, but hepatic CYP3A activity did not significantly decrease. Repeated dosing of clarithromycin caused a significant decrease in hepatic CYP3A activity (p = 0.005), while intestinal activity showed little further decline. The CYP3A5 or CYP3A4*1B genotype were unable to account for inter-individual variability in CYP3A activity.

Conclusions

Following the administration of clarithromycin, the onset of hepatic CYP3A inactivation is delayed compared to that of intestinal CYP3A. The time-course of drug–drug interactions due to clarithromycin will vary with the relative contribution of intestinal and hepatic CYP3A to the clearance and bioavailability of a victim substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CYP450:

Cytochrome P450

MIC:

Metabolic-intermediate complex

References

  1. Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O’Mara EM Jr, Hall SD (1998) The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 64(2):133–143

    Article  PubMed  CAS  Google Scholar 

  2. Gustavson LE, Kaiser JF, Edmonds AL, Locke CS, DeBartolo ML, Schneck DW (1995) Effect of omeprazole on concentrations of clarithromycin in plasma and gastric tissue at steady state. Antimicrob Agents Chemother 39(9):2078–2083

    Article  PubMed  CAS  Google Scholar 

  3. Sabada B (1998) Re-evaluation of the gastrointestinal effects of beta-lactam inhibitors of beta-lactamase. Rev Esp Quimioter 11(4):377–379

    PubMed  CAS  Google Scholar 

  4. Wolter K, Wagner K, Philipp T, Fritschka E (1994) Interaction between FK 506 and clarithromycin in a renal transplant patient. Eur J Clin Pharmacol 47(2):207–208

    Article  PubMed  CAS  Google Scholar 

  5. Mayhew BS, Jones DR, Hall SD (2000) An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Drug Metab Dispos 28(9):1031–1037

    PubMed  CAS  Google Scholar 

  6. Thummel KE, Wilkinson GR (1998) In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 38:389–430. doi:10.1146/annurev.pharmtox.38.1.389

    Article  PubMed  CAS  Google Scholar 

  7. Lin HL, Kenaan C, Hollenberg PF (2012) Identification of the residue in human CYP3A4 that is covalently modified by bergamottin and the reactive intermediate that contributes to the grapefruit juice effect. Drug Metab Dispos 40(5):998–1006. doi:10.1124/dmd.112.044560

    Article  PubMed  CAS  Google Scholar 

  8. Lin JH, Lu AY (1998) Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 35(5):361–390

    Article  PubMed  CAS  Google Scholar 

  9. Pinto AG, Wang YH, Chalasani N, Skaar T, Kolwankar D, Gorski JC, Liangpunsakul S, Hamman MA, Arefayene M, Hall SD (2005) Inhibition of human intestinal wall metabolism by macrolide antibiotics: effect of clarithromycin on cytochrome P450 3A4/5 activity and expression. Clin Pharmacol Ther 77(3):178–188

    Article  PubMed  CAS  Google Scholar 

  10. Quinney SK, Zhang X, Lucksiri A, Gorski JC, Li L, Hall SD (2010) Physiologically based pharmacokinetic model of mechanism-based inhibition of CYP3A by clarithromycin. Drug Metab Dispos 38(2):241–248. doi:10.1124/dmd.109.028746

    Article  PubMed  CAS  Google Scholar 

  11. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  12. Belle DJ, Callaghan JT, Gorski JC, Maya JF, Mousa O, Wrighton SA, Hall SD (2002) The effects of an oral contraceptive containing ethinyloestradiol and norgestrel on CYP3A activity. Br J Clin Pharmacol 53(1):67–74

    Article  PubMed  CAS  Google Scholar 

  13. Chu SY, Wilson DS, Guay DR, Craft C (1992) Clarithromycin pharmacokinetics in healthy young and elderly volunteers. J Clin Pharmacol 32(11):1045–1049

    PubMed  CAS  Google Scholar 

  14. Liu TC, Lin SF, Chen TP, Chang JG (2002) Polymorphism analysis of CYP3A5 in myeloid leukemia. Oncol Rep 9(2):327–329

    PubMed  CAS  Google Scholar 

  15. van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J (2002) CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 48(10):1668–1671

    PubMed  Google Scholar 

  16. Lin YS, Lockwood GF, Graham MA, Brian WR, Loi CM, Dobrinska MR, Shen DD, Watkins PB, Wilkinson GR, Kharasch ED, Thummel KE (2001) In-vivo phenotyping for CYP3A by a single-point determination of midazolam plasma concentration. Pharmacogenetics 11(9):781–791

    Article  PubMed  CAS  Google Scholar 

  17. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  18. Gorski JC, Hall SD, Jones DR, VandenBranden M, Wrighton SA (1994) Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 47(9):1643–1653

    Article  PubMed  CAS  Google Scholar 

  19. Schmiedlin-Ren P, Thummel KE, Fisher JM, Paine MF, Lown KS, Watkins PB (1997) Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1 alpha,25-dihydroxyvitamin D3. Mol Pharmacol 51(5):741–754

    PubMed  CAS  Google Scholar 

  20. Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, Roden MM, Belas F, Chaudhary AK, Roden DM, Wood AJ, Wilkinson GR (1999) Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 16(3):408–414

    Article  PubMed  CAS  Google Scholar 

  21. Kronbach T, Mathys D, Umeno M, Gonzalez FJ, Meyer UA (1989) Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 36(1):89–96

    PubMed  CAS  Google Scholar 

  22. Thummel KE, O’Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, Wilkinson GR (1996) Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 59(5):491–502

    Article  PubMed  CAS  Google Scholar 

  23. Perera MA, Thirumaran RK, Cox NJ, Hanauer S, Das S, Brimer-Cline C, Lamba V, Schuetz EG, Ratain MJ, Di Rienzo A (2009) Prediction of CYP3A4 enzyme activity using haplotype tag SNPs in African Americans. Pharmacogenomics J 9(1):49–60. doi:10.1038/tpj.2008.13

    Article  PubMed  CAS  Google Scholar 

  24. Krupka E, Venisse N, Lafay C, Gendre D, Diquet B, Bouquet S, Perault MC (2006) Probe of CYP3A by a single-point blood measurement after oral administration of midazolam in healthy elderly volunteers. Eur J Clin Pharmacol 62(8):653–659. doi:10.1007/s00228-006-0159-2

    Article  PubMed  CAS  Google Scholar 

  25. Lepper ER, Baker SD, Permenter M, Ries N, van Schaik RH, Schenk PW, Price DK, Ahn D, Smith NF, Cusatis G, Ingersoll RG, Bates SE, Mathijssen RH, Verweij J, Figg WD, Sparreboom A (2005) Effect of common CYP3A4 and CYP3A5 variants on the pharmacokinetics of the cytochrome P450 3A phenotyping probe midazolam in cancer patients. Clin Cancer Res 11(20):7398–7404. doi:10.1158/1078-0432.CCR-05-0520

    Article  PubMed  CAS  Google Scholar 

  26. Chaobal HN, Kharasch ED (2005) Single-point sampling for assessment of constitutive, induced, and inhibited cytochrome P450 3A activity with alfentanil or midazolam. Clin Pharmacol Ther 78(5):529–539. doi:10.1016/j.clpt.2005.08.004

    Article  PubMed  CAS  Google Scholar 

  27. Fellay J, Marzolini C, Decosterd L, Golay KP, Baumann P, Buclin T, Telenti A, Eap CB (2005) Variations of CYP3A activity induced by antiretroviral treatment in HIV-1 infected patients. Eur J Clin Pharmacol 60(12):865–873. doi:10.1007/s00228-004-0855-8

    Article  PubMed  CAS  Google Scholar 

  28. Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Khan IA, Shah A (2005) In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes. Clin Pharmacol Ther 77(5):415–426. doi:10.1016/j.clpt.2005.01.009

    Article  PubMed  CAS  Google Scholar 

  29. Eap CB, Fellay J, Buclin T, Bleiber G, Golay KP, Brocard M, Baumann P, Telenti A (2004) CYP3A activity measured by the midazolam test is not related to 3435 C > T polymorphism in the multiple drug resistance transporter gene. Pharmacogenetics 14(4):255–260

    Article  PubMed  CAS  Google Scholar 

  30. Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Bacchi CE, Marsh CL, McVicar JP, Barr DM, Perkins JD (1994) Use of midazolam as a human cytochrome P450 3A probe: II. Characterization of inter- and intraindividual hepatic CYP3A variability after liver transplantation. J Pharmacol Exp Ther 271(1):557–566

    PubMed  CAS  Google Scholar 

  31. Carrillo JA, Ramos SI, Agundez JA, Martinez C, Benitez J (1998) Analysis of midazolam and metabolites in plasma by high-performance liquid chromatography: probe of CYP3A. Ther Drug Monit 20(3):319–324

    Article  PubMed  CAS  Google Scholar 

  32. Lamba JK, Lin YS, Schuetz EG, Thummel KE (2002) Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 54(10):1271–1294

    Article  PubMed  CAS  Google Scholar 

  33. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391

    Article  PubMed  CAS  Google Scholar 

  34. Gibbs MA, Thummel KE, Shen DD, Kunze KL (1999) Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos 27(2):180–187

    PubMed  CAS  Google Scholar 

  35. Jones DR, Gorski JC, Hamman MA, Mayhew BS, Rider S, Hall SD (1999) Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 290(3):1116–1125

    PubMed  CAS  Google Scholar 

  36. Khan KK, He YQ, Domanski TL, Halpert JR (2002) Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: an evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol Pharmacol 61(3):495–506

    Article  PubMed  CAS  Google Scholar 

  37. Huang W, Lin YS, McConn DJ II, Calamia JC, Totah RA, Isoherranen N, Glodowski M, Thummel KE (2004) Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos 32(12):1434–1445. doi:10.1124/dmd.104.001313

    Article  PubMed  CAS  Google Scholar 

  38. Wang YH, Jones DR, Hall SD (2005) Differential mechanism-based inhibition of cyp3a4 and cyp3a5 by verapamil. Drug Metab Dispos 33(5):664–671

    Article  PubMed  CAS  Google Scholar 

  39. Greenblatt DJ, von Moltke LL, Harmatz JS, Chen G, Weemhoff JL, Jen C, Kelley CJ, LeDuc BW, Zinny MA (2003) Time course of recovery of cytochrome p450 3A function after single doses of grapefruit juice. Clin Pharmacol Ther 74(2):121–129. doi:10.1016/S0009-9236(03)00118-8

    Article  PubMed  CAS  Google Scholar 

  40. Fromm MF, Kroemer HK, Eichelbaum M (1996) Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 24(4):796–801

    Article  PubMed  CAS  Google Scholar 

  41. Hsu A, Granneman GR, Witt G, Locke C, Denissen J, Molla A, Valdes J, Smith J, Erdman K, Lyons N, Niu P, Decourt JP, Fourtillan JB, Girault J, Leonard JM (1997) Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother 41(5):898–905

    PubMed  CAS  Google Scholar 

  42. Nakamura K, Watanabe A, Okudaira N, Okazaki O, Sudo K (2007) Effect of ion suppression on judgment of enzyme inhibition and avoidance of error by utilizing a stable isotope-labeled probe substrate: example of CYP3A4 inhibition with [13 C4,15N] labeled midazolam as a substrate. Drug Metab Pharmacokinet 22(2):113–118

    Article  PubMed  CAS  Google Scholar 

  43. Bartkowski RR, Goldberg ME, Larijani GE, Boerner T (1989) Inhibition of alfentanil metabolism by erythromycin. Clin Pharmacol Ther 46(1):99–102

    Article  PubMed  CAS  Google Scholar 

  44. Ito K, Ogihara K, S-I K, Itoh T (2003) Prediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes. Drug Metab Dispos 31(7):945–954. doi:10.1124/dmd.31.7.945

    Article  PubMed  CAS  Google Scholar 

  45. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 64(5):477–483. doi:10.1016/s0009-9236(98)90130-8

    Article  PubMed  CAS  Google Scholar 

  46. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther 66(2):118–127. doi:10.1053/cp.1999.v66.100453001

    PubMed  CAS  Google Scholar 

  47. Lilja JJ, Kivisto KT, Backman JT, Lamberg TS, Neuvonen PJ (1998) Grapefruit juice substantially increases plasma concentrations of buspirone. Clin Pharmacol Ther 64(6):655–660. doi:10.1016/S0009-9236(98)90056-X

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants T32GM08425 and GM067308.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Hall.

Additional information

Sara K. Quinney and Srikar R. Malireddy contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinney, S.K., Malireddy, S.R., Vuppalanchi, R. et al. Rate of onset of inhibition of gut-wall and hepatic CYP3A by clarithromycin. Eur J Clin Pharmacol 69, 439–448 (2013). https://doi.org/10.1007/s00228-012-1339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-012-1339-x

Keywords

Navigation