Skip to main content
Log in

VKORC1 −1639G>A and CYP2C9*3 are the major genetic predictors of phenprocoumon dose requirement

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Phenprocoumon, similar to other coumarin-derived anticoagulants, is associated with a large variation in the individual dose requirement to achieve stable anticoagulation. Polymorphisms in the vitamin K epoxide reductase complex subunit 1 (VKORC1) and the liver enzyme cytochrome P450 2C9 (CYP2C9) effectively account for the variability in warfarin and acenocoumarol response but are less well-defined pharmacogenetic predictors in phenprocoumon therapy.

Methods

A retrospective study was performed on 185 outpatients attending anticoagulation clinics in Austria and Germany. These patients were genotyped for the VKORC1 −1639G>A and 3730G>A polymorphisms as well as for the CYP2C9 *2 and *3 polymorphisms using a reverse hybridisation-based teststrip assay.

Results

The VKORC1 −1639A allele, which was present at a frequency of 41.4% in the study cohort, significantly reduced the mean weekly phenprocoumon dose by 3 mg (19%) in the heterozygous and by 6.7 mg (43%) in the homozygous state compared to wild-type carriers (15.5 ± 6.8 mg, p < 0.0001). A stepwise multiple regression analysis revealed that VKORC1 −1639G>A, age and CYP2C9*3 were the major independent determinants of phenprocoumon dose, accounting for 14.2, 9.1 and 4.7% of its variability, respectively (p ≤ 0.0007). The CYP2C9*2 polymorphism had a marginal influence (1.4%) and failed to reach statistical significance (p = 0.062). The VKORC1 3730G>A genotype had no additional predictive power for individual dose variability.

Conclusion

Similar to warfarin and acenocoumarol, the VKORC1 −1639G>A polymorphism had the highest impact on the maintenance dose of phenprocoumon. The factor age was the second most important predictor and explained a greater percentage of the variability than CYP2C9 genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Li T, Chang CY, Jin DY, Lin PJ, Khvovora A, Stafford D (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427:541–544

    Article  CAS  PubMed  Google Scholar 

  2. Rost S, Fregin A, Ivaskevicius V et al (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427:537–541

    Article  CAS  PubMed  Google Scholar 

  3. Harrington DJ, Underwood S, Morse C, Shearer MJ, Tuddenham EGD, Mumford AD (2005) Pharmacodynamic resistance to warfarin associated with a Val66Met substitution in vitamin K epoxide reductase complex subunit 1. Thromb Haemost 93:23–26

    CAS  PubMed  Google Scholar 

  4. Bodin L, Horellou MH, Flaujac C, Loriot MA, Samama MM (2005) A vitamin K epoxide reductase complex subunit-1 (VKORC1) mutation in a patient with vitamin K antagonist resistance. J Thromb Haemost 3:1533–1535

    Article  CAS  PubMed  Google Scholar 

  5. Loebstein R, Dvoskin I, Halkin H et al (2007) A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 109:2477–2480

    Article  CAS  PubMed  Google Scholar 

  6. D’Andrea G, D’Ambrosio RL, Perna D et al (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105:645–649

    Article  PubMed  Google Scholar 

  7. Rieder MJ, Reiner AP, Gage BF et al (2005) Effect of VKORC1 Haplotypes on Transcriptional Regulation and Warfarin Doses. N Engl J Med 352:2285–2293

    Article  CAS  PubMed  Google Scholar 

  8. Wadelius M, Chen LY, Downes K et al (2005) Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 5:262–270

    Article  CAS  PubMed  Google Scholar 

  9. Ufer M (2005) Comparative pharmacokinetics of vitamin K antagonists. Warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet 12:1227–1246

    Article  Google Scholar 

  10. Margaglione M, Colaizzo D, D’Andrea G, Brancaccio V, Ciampa A, Grandone E, Di Minno G (2000) Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 84:775–778

    CAS  PubMed  Google Scholar 

  11. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, Rettie AE (2002) Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287:1690–1698

    Article  CAS  PubMed  Google Scholar 

  12. Voora D, Eby C, Linder MW et al (2005) Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. Thromb Haemost 93:700–705

    CAS  PubMed  Google Scholar 

  13. Hillman MA, Wilke RA, Yale SH et al (2005) A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res 3:137–145

    Article  CAS  PubMed  Google Scholar 

  14. Hermida J, Zarza J, Alberca I, Montes R, Lopez ML, Molina E, Rocha E (2002) Differential effects of 2C9*3 and 2C9*2 variants of cytochrome P-450 CYP2C9 on sensitivity to acenocoumarol. Blood 99:4237–4239

    Article  CAS  PubMed  Google Scholar 

  15. Tassies D, Freire C, Pijoan J, Maragall S, Monteagudo J, Ordinas A, Reverter JC (2002) Pharmacogenetics of acenocoumarol: cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. Haematologica 87:1185–1191

    CAS  PubMed  Google Scholar 

  16. Bodin L, Verstuyft C, Tregouet DA et al (2005) Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 106:135–140

    Article  CAS  PubMed  Google Scholar 

  17. Kirchheiner J, Ufer M, Walter EC et al (2004) Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phenprocoumon in healthy volunteers. Pharmacogenetics 14:19–26

    Article  CAS  PubMed  Google Scholar 

  18. Ufer M, Kammerer B, Kahlich R, Kirchheiner J, Yasar U, Brockmöller J, Rane A (2004) Genetic polymorphisms of cytochrome P450 2C9 causing reduced phenprocoumon (S)-7-hydroxylation in vitro and in vivo. Xenobiotica 34:847–859

    Article  CAS  PubMed  Google Scholar 

  19. Carlquist JF, Horne BD, Muhlestein JB et al (2006) Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis 22(3):191–197

    Article  CAS  PubMed  Google Scholar 

  20. Schwarz U, Ritchie MD, Bradford Y et al (2008) Genomic determinants of response to warfarin during initial anticoagulation. N Engl J Med 358:999–1008

    Article  CAS  PubMed  Google Scholar 

  21. Meckley LM, Wittkowsky AK, Rieder MJ, Rettie AE, Veenstra DL (2008) An analysis of the relative effects of VKORC1 and CYP2C9 variants on anticoagulation related outcomes in warfarin-treated patients. Thromb Haemost 100:229–239

    CAS  PubMed  Google Scholar 

  22. Wadelius M, Chen LY, Lindh JD et al (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113:784–792

    Article  CAS  PubMed  Google Scholar 

  23. Schalekamp T, Brasse BP, Roijers JF et al (2006) VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther 80:13–22

    Article  CAS  PubMed  Google Scholar 

  24. Spreafico M, Lodigiani C, van Leeuwen Y et al (2008) Effects of CYP2C9 and VKORC1 on INR variations and dose requirements during initial phase of anticoagulation therapy. Pharmacogenomics 9:1237–1250

    Article  CAS  PubMed  Google Scholar 

  25. Schalekamp T, Oosterhof M, van Meegen E et al (2004) Effects of cytochrome P450 2C9 polymorphisms on phenprocoumon anticoagulation status. Clin Pharmacol Ther 76:409–417

    Article  CAS  PubMed  Google Scholar 

  26. Schalekamp T, Brasse BP, Roijers JF et al (2007) VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: Interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 81:185–193

    Article  CAS  PubMed  Google Scholar 

  27. Hummers-Pradier E, Hess S, Adham IM, Pieske B, Kochen MM (2003) Determination of bleeding risk using genetic markers in patients taking phenprocoumon. Eur J Clin Pharmacol 59:213–219

    Article  CAS  PubMed  Google Scholar 

  28. Visser LE, van Vliet M, van Schaik RH et al (2004) The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics 14:27–33

    Article  CAS  PubMed  Google Scholar 

  29. Sconce EA, Khan TI, Wynne HA et al (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106:2329–2333

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Y, Shennan M, Reynolds KK, Johnson NA, Herrnberger MR, Valdes R Jr, Linder MW (2007) Estimation of warfarin maintenance dose based on VKORC1 (−1639G>A) and CYP2C9 genotypes. Clin Chem 53:1199–1205

    Article  CAS  PubMed  Google Scholar 

  31. Anderson JL, Horne BD, Stevens SM et al (2007) Randomized trial of genotyped-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116:2563–2570

    Article  CAS  PubMed  Google Scholar 

  32. Gage BF, Eby C, Johnson JA et al (2008) Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 84:326–331

    Article  CAS  Google Scholar 

  33. The International Warfarin Pharmacogenetics Consortium (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360:753–764

    Article  Google Scholar 

  34. Oberkanins C, Moritz A, de Villiers JN, Kotze MJ, Kury F (2000) A reverse-hybridization assay for the rapid and simultaneous detection of nine HFE gene mutations. Genet Test 4:121–124

    Article  CAS  PubMed  Google Scholar 

  35. Montes R, Ruiz de Gaona E, Martinez-Gonzales MA, Alberca I, Hermida J (2006) The c.−1639G>A polymorphism if the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients. Br J Haematol 133:183–187

    Article  CAS  PubMed  Google Scholar 

  36. Yuan HY, Chen JJ, Lee MTM et al (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Gen 14:1745–1751

    Article  CAS  PubMed  Google Scholar 

  37. Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V et al (2006) The influence of sequence variations in factor VII, γ-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Throm Haemost 95:782–787

    CAS  Google Scholar 

  38. Borgiani P, Ciccacci C, Forte V, Romano S, Federici G, Novelli G (2007) Allelic variants in the CYP2C9 and VKORC1 loci and interindividual variability in the anticoagulant dose effect of warfarin in Italians. Pharmacogenomics 8:1545–1550

    Article  CAS  PubMed  Google Scholar 

  39. Cooper GM, Johnson JA, Langaee TY et al (2008) A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112:1022–1027

    Article  CAS  PubMed  Google Scholar 

  40. Takeuchi F, McGinnis R, Bourgeois S et al (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal Genetic Determinants of Warfarin Dose. PLoS Genet 5(3):e10000433

    Article  Google Scholar 

  41. Caldwell MD, Awad T, Johnson JA et al (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111:4106–4112

    Article  CAS  PubMed  Google Scholar 

  42. Perez-Andreu V, Roldan V, Anton AI, Garcia-Barbera N, Corral J, Vicente V, Gonzalez-Conejero R (2009) Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood 113:4977–4979

    Article  CAS  PubMed  Google Scholar 

  43. Good AC, Henz S (2007) A clinical algorithm to predict the loading dose of phenprocoumon. Thromb Res 120:921–925

    Article  CAS  PubMed  Google Scholar 

  44. Werner D, Werner U, Wuerfel A, Grosch A, Lestin HG, Eschenhagen T, Rau T (2009) Pharmacogenetic characteristics of patients with complicated phenprocoumon dosing. Eur J Clin Pharmacol 65:783–788

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helene Puehringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puehringer, H., Loreth, R.M., Klose, G. et al. VKORC1 −1639G>A and CYP2C9*3 are the major genetic predictors of phenprocoumon dose requirement. Eur J Clin Pharmacol 66, 591–598 (2010). https://doi.org/10.1007/s00228-010-0809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-010-0809-2

Keywords

Navigation