Skip to main content

Advertisement

Log in

Genotype-by-environment interactions during early development of the sea urchin Evechinus chloroticus

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The increase in seawater temperature due to anthropogenic climate change is likely to affect population persistence and changes in distributional ranges of marine species. Adaptation to warmer environmental conditions will be determined by the presence of tolerant genotypes within a population. The present study determined the genotype-by-environment (G × E) interactions during early development of the New Zealand sea urchin Evechinus chloroticus cultured at 18 °C (mean annual temperature), 21 °C (ambient summer temperature) and 24 °C (+3 °C above ambient summer temperature). The experiment was performed in 3 experimental blocks using gametes from 3 males and 3 females crossed in all combinations (North Carolina II cross-breeding design), resulting in 9 families per experimental block (i.e., total of 27 families). Differences between female and male identities were quantified during cleavage and gastrulation: Reaction norms (i.e., interaction plots) showed a clear G × E interaction, with some genotypes performing better than others at high temperatures. Heritability during gastrulation was 0.51, indicating that 51 % of the variability corresponds to genetic variation. Overall, the present study shows that seawater temperature has a negative effect on early development of E. chloroticus; however, there are resilient genotypes in the studied population that could provide the genetic potential to adapt to future ocean conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barker M (2013) Evechinus chloroticus. In: John ML (ed) Developments in aquaculture and fisheries science. Elsevier, Amsterdam, pp 355–368

    Google Scholar 

  • Bell G, Collins S (2008) Adaptation, extinction and global change. Evol Appl 1:3–16. doi:10.1111/j.1752-4571.2007.00011.x

    Article  Google Scholar 

  • Butts IAE, Litvak MK (2007) Stock and parental effects on embryonic and early larval development of winter flounder Pseudopleuronectes americanus (Walbaum). J Fish Biol 70:1070–1087. doi:10.1111/j.1095-8649.2007.01369.x

    Article  Google Scholar 

  • Byrne M, Przeslawski R (2013) Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integr Comp Biol 53:582–596. doi:10.1093/icb/ict049

    Article  CAS  Google Scholar 

  • Calosi P, Rastrick SPS, Lombardi C, de Guzman HJ, Davidson L, Jahnke M, Giangrande A, Hardege JD, Schulze A, Spicer JI, Gambi M-C (2013) Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Phil Trans R Soc B. doi:10.1098/rstb.2012.0444

    Google Scholar 

  • Chang Y, Zhang W, Zhao C, Song J (2012) Estimates of heritabilities and genetic correlations for growth and gonad traits in the sea urchin Strongylocentrotus intermedius. Aquac Res 43:271–280. doi:10.1111/j.1365-2109.2011.02825.x

    Article  Google Scholar 

  • Crean AJ, Marshall DJ (2008) Gamete plasticity in a broadcast spawning marine invertebrate. PNAS 105:13508–13513. doi:10.1073/pnas.0806590105

    Article  CAS  Google Scholar 

  • Crean AJ, Dwyer JM, Marshall DJ (2013) Adaptive paternal effects? Experimental evidence that the paternal environment affects offspring performance. Ecology 94:2575–2582. doi:10.1890/13-0184.1

    Article  Google Scholar 

  • Császár NBM, Ralph PJ, Frankham R, Berkelmans R, van Oppen MJH (2010) Estimating the potential for adaptation of corals to climate warming. PLoS One 5(3):e9751. doi:10.1371/journal.pone.0009751

    Article  Google Scholar 

  • Delorme NJ, Sewell MA (2013) Temperature limits to early development of the New Zealand sea urchin Evechinus chloroticus (Valenciennes 1846). J Therm Biol 38:218–224. doi:10.1016/j.jtherbio.2013.02.007

    Article  Google Scholar 

  • Delorme NJ, Sewell MA (2014) Temperature and salinity: two climate change stressors affecting early development of the New Zealand sea urchin Evechinus chloroticus. Mar Biol. doi:10.1007/s00227-014-2480-0

    Google Scholar 

  • Delorme NJ, Sewell MA (2016) Effects of warm acclimation on physiology and gonad development in the sea urchin Evechinus chloroticus. Comp Biochem Physiol A Mol Integr Physiol 198:33–40. doi:10.1016/j.cbpa.2016.03.020

    Article  CAS  Google Scholar 

  • Dix T (1970a) Biology of Evechinus chloroticus (Echinoidea: Echinometridae) from different localities: 1 general. N Z J Mar Fresh 4:91–116. doi:10.1080/00288330.1970.9515331

    Article  Google Scholar 

  • Dix T (1970b) Biology of Evechinus chloroticus (Echinoidea: Echinometridae) from different localities: 3 reproduction. N Z J Mar Fresh 4:385–405. doi:10.1080/00288330.1970.9515355

    Article  Google Scholar 

  • Eisen E, Saxton A (1983) Genotype by environment interactions and genetic correlations involving two environmental factors. Theor Appl Genet 67:75–86. doi:10.1007/bf00303929

    Article  CAS  Google Scholar 

  • Evans JP, Marshall DJ (2005) Male-by-female interactions influence fertilization success and mediate the benefits of polyandry in the sea urchin Heliocidaris erythrogramma. Evolution 59:106–112. doi:10.1111/j.0014-3820.2005.tb00898.x

    Article  Google Scholar 

  • Evans JP, García-gonzález F, Marshall DJ (2007) Sources of genetic and phenotypic variance in fertilization rates and larval traits in a sea urchin. Evolution 61:2832–2838. doi:10.1111/j.1558-5646.2007.00227.x

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Essex

    Google Scholar 

  • Fenwick G, Horning D (1980) Echinodermata of the Snares Islands, southern New Zealand. N Z J Mar Fresh 14:437–445. doi:10.1080/00288330.1980.9515888

    Article  Google Scholar 

  • Foo S, Byrne M (2016) Acclimatization and adaptive capacity of marine species in a changing ocean. Adv Mar Biol. doi:10.1016/bs.amb.2016.06.001

    Google Scholar 

  • Foo SA, Dworjanyn SA, Poore AGB, Byrne M (2012) Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. PLoS One 7(8):e42497. doi:10.1371/journal.pone.0042497

    Article  CAS  Google Scholar 

  • Foo SA, Dworjanyn SA, Khatkar MS, Poore AGB, Byrne M (2014) Increased temperature, but not acidification, enhances fertilization and development in a tropical urchin: potential for adaptation to a tropicalized eastern Australia. Evol Appl 7:1226–1237. doi:10.1111/eva.12218

    Article  CAS  Google Scholar 

  • Foo SA, Sparks KM, Uthicke S, Karelitz S, Barker M, Byrne M, Lamare M (2016) Contributions of genetic and environmental variance in early development of the Antarctic sea urchin Sterechinus neumayeri in response to increased ocean temperature and acidification. Mar Biol 163:1–11. doi:10.1007/s00227-016-2903-1

    Article  CAS  Google Scholar 

  • Franke ES (2005) Aspects of fertilization ecology in Evechinus chloroticus and Coscinasterias muricata. PhD-Biological Sciences, University of Auckland

  • Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208. doi:10.1146/annurev-genet-110711-155511

    Article  CAS  Google Scholar 

  • Garner DM (1969) The seasonal range of sea temperature on the New Zealand shelf. N Z J Mar Fresh 3:201–208. doi:10.1080/00288330.1969.9515289

    Article  Google Scholar 

  • Green BS (2008) Maternal effects in fish populations. Adv Mar Biol 54:1–105. doi:10.1016/S0065-2881(08)00001-1

    Article  Google Scholar 

  • Hamdoun A, Epel D (2007) Embryo stability and vulnerability in an always changing world. PNAS 104:1745–1750. doi:10.1073/pnas.0610108104

    Article  CAS  Google Scholar 

  • Heath DD, Fox CW, Heath JW (1999) Maternal effects on offspring size: variation through early development of chinook salmon. Evolution 53:1605–1611. doi:10.2307/2640906

    Article  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479. doi:10.1038/nature09670

    Article  CAS  Google Scholar 

  • Hutchings JA, Bishop TD, McGregor-Shaw CR (1999) Spawning behaviour of Atlantic cod, Gadus morhua: evidence of mate competition and mate choice in a broadcast spawner. Can J Fish Aquat Sci 56:97–104. doi:10.1139/f98-216

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: impact, adaptation and vulnerability. Working Group II Contribution to the IPCC 5th Assessment Report. Cambridge University Press, Cambridge

  • Kelly MW, Padilla-Gamiño JL, Hofmann GE (2013) Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob Change Biol 19:2536–2546. doi:10.1111/gcb.12251

    Article  Google Scholar 

  • Kvingedal R, Evans BS, Lind CE, Taylor JJU, Dupont-Nivet M, Jerry DR (2010) Population and family growth response to different rearing location, heritability estimates and genotype × environment interaction in the silver-lip pearl oyster (Pinctada maxima). Aquaculture 304:1–6. doi:10.1016/j.aquaculture.2010.02.035

    Article  Google Scholar 

  • Liu X, Xiang J, Chang Y, Ding J, Cao X (2004) Study on heritability of growth in the juvenile sea urchin Strongylocentrotus nudus. J Shellfish Res 23(2):593–597

    Google Scholar 

  • Liu X, Chang Y, Xiang J, Cao X (2005) Estimates of genetic parameters for growth traits of the sea urchin, Strongylocentrotus intermedius. Aquaculture 243:27–32. doi:10.1016/j.aquaculture.2004.10.014

    Article  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Meyer E, Davies S, Wang S, Willis BL, Abrego D, Juenger TE, Matz MV (2009) Genetic variation in responses to a settlement cue and elevated temperature in the reef-building coral Acropora millepora. Mar Ecol Prog Ser 392:81–92. doi:10.3354/meps08208

    Article  CAS  Google Scholar 

  • Munday PL, Warner RR, Monro K, Pandolfi JM, Marshall DJ (2013) Predicting evolutionary responses to climate change in the sea. Ecol Lett 16(12):1488–1500. doi:10.1111/ele.12185

    Article  Google Scholar 

  • Nagel MM, Sewell MA, Lavery SD (2015) Differences in population connectivity of a benthic marine invertebrate Evechinus chloroticus (Echinodermata: Echinoidea) across large and small spatial scales. Conserv Genet 16:965–978. doi:10.1007/s10592-015-0716-2

    Article  Google Scholar 

  • Nduwumuremyi A, Tongoona P, Habimana S (2013) Mating designs: helpful tool for quantitative plant breeding analysis. J Plant Breed Genet 1:117–129

    Google Scholar 

  • Pistevos JCA, Calosi P, Widdicombe S, Bishop JDD (2011) Will variation among genetic individuals influence species responses to global climate change? Oikos 120:675–689. doi:10.1111/j.1600-0706.2010.19470.x

    Article  Google Scholar 

  • Salinas S, Brown Simon C, Mangel M, Munch Stephan B (2013) Non-genetic inheritance and changing environments. Non-Genet Inherit 1:38–50. doi:10.2478/ngi-2013-0005

    Google Scholar 

  • Schiel DR (2013) The other 93 %: trophic cascades, stressors and managing coastlines in non-marine protected areas. N Z J Mar Fresh 47:374–391. doi:10.1080/00288330.2013.810161

    Article  Google Scholar 

  • Schiel D, Kingsford MJ, Choat JH (1986) Depth distribution and abundance of benthic organisms and fishes at the subtropical Kermadec Islands. N Z J Mar Fresh 20:521–535. doi:10.1080/00288330.1986.9516173

    Article  Google Scholar 

  • Schiel DR, Lilley SA, South PM, Coggins JHJ (2016) Decadal changes in sea surface temperature, wave forces and intertidal structure in New Zealand. Mar Ecol Prog Ser 548:77–95. doi:10.3354/meps11671

    Article  Google Scholar 

  • Sewell MA, Young CM (1999) Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. J Exp Mar Biol Ecol 236:291–305. doi:10.1016/S0022-0981(98)00210-X

    Article  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. J Exp Biol 213:912–920. doi:10.1242/jeb.037473

    Article  CAS  Google Scholar 

  • Sunday JM, Crim RN, Harley CDG, Hart MW (2011) Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS One 6:e22881. doi:10.1371/journal.pone.0022881

    Article  CAS  Google Scholar 

  • Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136:3033–3042. doi:10.1242/dev.033183

    Article  CAS  Google Scholar 

  • Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9:255–266. doi:10.1038/nrg2322

    Article  CAS  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Willmer P (1999) Environmental physiology of animals. Blackwell Publisher, Massachusetts

    Google Scholar 

  • Zhang W, Zhao C, Chen M, Chang Y, Song J, Luo S (2013) Family growth response to different laboratory culture environments shows genotype-environment interaction in the sea urchin Strongylocentrotus intermedius. Aquac Res 44:1706–1714. doi:10.1111/j.1365-2109.2012.03175.x

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Errol Murray and Peter Browne for helping with setup of the experiment; Brady Doak for providing necessary equipment for animal collection; Leonardo Zamora for helping with animal collection, spawning induction and sampling; and Erica Zarate for statistical assistance. NJD was supported by a Chilean Government Scholarship (Becas Chile, CONICYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalí J. Delorme.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of the animals were followed.

Additional information

Responsible Editor: S. Uthicke.

Reviewed by Undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delorme, N.J., Sewell, M.A. Genotype-by-environment interactions during early development of the sea urchin Evechinus chloroticus . Mar Biol 163, 215 (2016). https://doi.org/10.1007/s00227-016-2987-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2987-7

Keywords

Navigation